> Our technology. Your success. Pumps · Valves · Service

Product Portfolio 2020

Pumps I Automation

Type Series Index

Amacan K	52	Hyamat K	46	RVM	70
Amacan P	53	Hyamat SVP	46	RVR	70
Amacan S	53	Hyamat SVP ECO	46	RVT	70
Amaclean	48	Hyamat V	46	RWCP / RWCN	41
Amacontrol II	74	Hya-Rain / Hya-Rain N	42		
Amacontrol III	74		42	Sewabloc	55
		Hya-Rain Eco			
Ama-Drainer 4/5	47	Hya-Solo D	44	Sewatec	55
Ama-Drainer 80, 100	48	Hya-Solo D FL	45	Sewatec SPN	55
Ama-Drainer N	47	Hya-Solo D FL Compact	45	SEZ	67
Ama-Drainer-Box	49	Hya-Solo DSV	45	SEZT	67
Ama-Drainer-Box Mini	49	Hyatronic N	74	SNW	67
Amaline	54			SPY	68
Amamix	54	ILN	32	SRL	50
Ama-Porter CK Pump Station	50	ILNC	33	SRP	50
Ama-Porter F / S	48	INVCP	40	SRS	50
Amaprop	54	Ixo N	43	Surpress Feu SFE	47
			43 43		
Amarex	52	Ixo-Pro	43	Surpresschrom SIC.2	46
Amarex KRT	52			Surpresschrom SIC.2 SVP	47
Amarex N	52	KSB Delta Basic MVP/SVP	44	Surpresschrom SIC.2 V	47
AU	59	KSB Delta Macro F/VC/SVP	43		
AU Monobloc	59	KSB Delta Primo F/VC/SVP	44	TBC	56
		KSB Delta Solo MVP/SVP	44		
B Pump	61	KSB Delta Solo/Basic Compact MVP	44	UPA 150C	60
	68		29		
Beveron	00	KSB Guard		UPA 200, 200B, 250C	60
		KSB SuPremE	28	UPA 300, 350	60
Calio	31	KSB UMA-S	28	UPA 400-850	61
Calio S	30	KWP	55	UPA D	61
Calio Z	31	KWP-Bloc	55	UPA Control	73
Calio-Therm NC	30			UPAchrom 100 CC	60
Calio-Therm S	30	LCC-M	56	UPAchrom 100 CN	60
Calio-Therm S NC/NCV	30	LCC-R	56	of Achioni 100 Ch	00
Cervomatic EDP.2	73	LCV	57	Vitacast	64
CHTA / CHTC / CHTD	65	LevelControl Basic 2	73	Vitacast Bloc	64
CHTR	40	LHD	57	Vitachrom	64
CHTRa	40	LSA-S	56	Vitalobe	65
CINCP / CINCN	40	LUV / LUVA	66	Vitaprime	64
CK 800 Pump Station	50	LUV Nuclear	69	Vitastage	65
	50	LOV NUClear	09	vitastage	05
CK 1000 Pump Station			20		
Comeo	62	Magnochem	38	WBC	56
Compacta	49	Magnochem 685	38	WKTB	66
Controlmatic E	73	Magnochem-Bloc	38	WKTR	41
Controlmatic E.2	73	MDX	57		
CPKN	37	Megabloc	35	YNK	66
CTN	39	MegaCPK	36		00
CIN	29	5		73.67	50
		Megaline	33	ZW	58
DU / EU	72	Meganorm	35		
00710					
50710		MHD	57		
EDS	71	MHD mini-Compacta	57 49		
EDS	71 40				
EDS Estigia	40	mini-Compacta MK / MKY	49 48		
EDS Estigia Etabloc	40 34	mini-Compacta MK / MKY Movitec	49 48 62		
EDS Estigia Etabloc Etabloc SYT	40 34 36	mini-Compacta MK / MKY Movitec Movitec H(S)I	49 48 62 62		
EDS Estigia Etabloc Etabloc SYT Etachrom B	40 34 36 34	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI	49 48 62 62 62		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L	40 34 36 34 34	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco	49 48 62 62 62 42		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etachrom L	40 34 36 34 34 32	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro	49 48 62 62 62 42 42		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline Etaline DL	40 34 36 34 34 32 31	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top	49 48 62 62 62 42 42 43		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L	40 34 36 34 34 32 31 31	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro	49 48 62 62 62 42 42		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline Etaline DL	40 34 36 34 34 32 31	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top	49 48 62 62 62 42 42 43		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L	40 34 36 34 34 32 31 31	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multi teco	49 48 62 62 62 42 42 43 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z	40 34 36 34 32 31 31 31 36 32	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec	49 48 62 62 62 42 42 43 63 71		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline Z	40 34 36 34 32 31 31 31 36 32 32	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multi teco	49 48 62 62 62 42 42 43 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm	40 34 36 34 32 31 31 36 32 32 33	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multi Eco-Top Multitec Multitec Multitec-RO	49 48 62 62 42 42 43 63 71		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm	40 34 36 34 32 31 31 36 32 32 32 33 33 36	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ	49 48 62 62 42 42 43 63 71 63 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V	40 34 36 34 32 31 31 36 32 32 33 33 36 34	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec Multitec PMZ PNW	49 48 62 62 42 42 43 63 71 63 63 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm R	40 34 36 34 32 31 31 36 32 32 33 36 34 33	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ	49 48 62 62 42 43 63 71 63 63 67 68 67		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V	40 34 36 34 32 31 31 36 32 32 33 36 34 33 59	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR	49 48 62 62 42 42 43 63 71 63 67 68 67 69		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm R	40 34 36 34 32 31 31 36 32 32 33 36 34 33	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	49 48 62 62 42 43 63 71 63 63 67 68 67		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline DL Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR	49 48 62 62 42 42 43 63 71 63 67 68 67 69		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I	40 34 36 34 32 31 31 36 32 32 33 36 34 33 59 59 38	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R	49 48 62 62 42 43 63 71 63 67 68 67 68 67 68 67 28 28 28		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline SYT Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP	40 34 36 34 31 31 31 36 32 32 33 36 34 33 59 59 59 38 38	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco	49 48 62 62 42 42 43 63 71 63 67 68 67 68 67 69 28		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline SYT Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N	40 34 34 32 31 31 36 32 33 33 36 34 33 59 59 38 38 49	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpMeter	49 48 62 62 42 43 63 71 63 63 67 68 67 68 67 69 28 28 29		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline SYT Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP	40 34 36 34 31 31 31 36 32 32 33 36 34 33 59 59 59 38 38	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV	49 48 62 62 42 43 63 71 63 63 67 68 67 69 28 28 28 29 71		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO	49 48 62 62 42 42 43 63 71 63 67 68 67 69 28 28 29 71 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline Z Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59 59	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP	49 48 62 62 42 43 63 71 63 67 68 67 68 67 69 28 28 28 29 71 63 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59	mini-Compacta MK / MKY Movitec Movitec (S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER	49 48 62 42 42 43 63 71 63 67 68 67 68 67 68 28 28 28 29 71 63 63 63 63 68		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline Z Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59 59	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP	49 48 62 62 42 43 63 71 63 67 68 67 68 67 69 28 28 28 29 71 63 63		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline Z Etaline Z Etaline-R Etanorm Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59 59	mini-Compacta MK / MKY Movitec Movitec (S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER	49 48 62 42 42 43 63 71 63 67 68 67 68 67 69 28 28 28 29 71 63 63 63 63 68		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD	40 34 36 34 32 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 57 43	mini-Compacta MK / MKY Movitec Movitec (S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM	49 48 62 62 42 43 63 71 63 67 68 67 68 67 68 67 68 28 28 29 71 63 63 63 63 63 63 63 63 63 63 63 69 69		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 59 38 38 49 59 59 59 38 38 49 59 59 59 59 59 59 59 59 59 59 59 59 59	mini-Compacta MK / MKY Movitec Movitec VCI Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM	49 48 62 62 42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 63 63 68 69 69 70		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime L Etaseco / Etaseco-1 Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM	40 34 36 34 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 59 59 38 38 49 59 59 59 59 59 59 59 59 59 5	mini-Compacta MK / MKY Movitec Movitec H(S)I Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHR Rotex	49 48 62 62 42 42 43 63 71 63 67 68 67 68 67 69 28 28 29 71 63 63 63 63 63 63 68 69 69 70 48		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 59 59 38 38 49 59 57 43 65 66 66 66 71	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR ROTEX RHM	49 48 62 42 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 63 63 63 63 69 69 70 48 39		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH	40 34 36 34 31 31 36 32 32 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 38 49 59 59 38 38 38 38 38 38 38 38 38 38 38 38 38	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHM RHM RHM RHM RHM RHPH PRHd	49 48 62 42 42 43 63 71 63 67 68 67 68 67 69 28 28 29 71 63 63 63 63 63 63 63 69 90 70 48 39 39		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM-RO HPH HPK	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 57 43 65 66 66 66 71 35 35	mini-Compacta MK / MKY Movitec Movitec (S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHM RHM RHM RHPH / RPHd RPH-LF	49 48 62 42 42 43 63 71 63 67 68 67 68 67 68 28 28 29 71 63 63 63 63 63 68 69 69 70 48 39 39		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline DL Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm-R Etaprime B Etaprime B Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 59 59 59 59 59 59 59 5	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHM RHM RHM RHM RHM RHPH PRHd	49 48 62 62 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 63 63 63 69 69 70 48 39 39 39 39 70		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM-RO HPH HPK	40 34 36 34 31 31 36 32 32 33 36 34 33 59 59 38 38 49 59 57 43 65 66 66 66 71 35 35	mini-Compacta MK / MKY Movitec Movitec (S)I Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHM RHM RHM RHM RHPH / RPHd RPH-LF	49 48 62 42 42 43 63 71 63 67 68 67 68 67 68 28 28 29 71 63 63 63 63 63 68 69 69 70 48 39 39		
EDS Estigia Etabloc SYT Etachrom B Etachrom L Etaline DL Etaline DL Etaline Z Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm V Etanorm R Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPK-L HVF	40 34 36 34 31 31 36 32 33 36 34 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 57 43 65 66 66 66 71 35 35 35 35 35 35 35 35 35 35	mini-Compacta MK / MKY Movitec Movitec VCI Multi Eco Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR Rotex RPH RPH / RPHd RPH-LF RPH-RO RPH-V	49 48 62 62 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 63 63 63 69 69 70 48 39 39 39 39 70 39		
EDS Estigia Etabloc Etabloc SYT Etachrom B Etachrom L Etaline Etaline DL Etaline L Etaline SYT Etaline Z Etaline-R Etanorm SYT / RSY Etanorm V Etanorm V Etanorm V Etanorm V Etanorm R Etaprime B Etaprime L Etaseco / Etaseco-I Etaseco RVP Evamatic-Box N EZ B/L FGD Filtra N HGB / HGC / HGD HGI HGM HGM-RO HPH HPK HPKL	40 34 36 34 32 31 31 36 32 33 36 34 33 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 49 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 38 38 39 59 59 59 59 59 59 59 59 59 5	mini-Compacta MK / MKY Movitec Movitec VCI Movitec VCI Multi Eco-Pro Multi Eco-Top Multitec Multitec-RO Omega PHZ PNW PNZ PSR PumpDrive 2 / PumpDrive 2 Eco PumpDrive R PumpDrive R PumpMeter RC / RCV RDLO RDLP RER RHD RHM RHR RHR RHP RHP / RPHd RPH-LF RPH-RO	49 48 62 62 42 43 63 71 63 67 68 67 69 28 28 29 71 63 63 63 63 63 63 69 69 70 48 39 39 39 39 70		

2

Our tradition: Competence since 1871

We have supplied generations of customers worldwide with pumps, valves, automation products and services. A company with that kind of experience knows that success is a process based on a stream of innovations. A process made possible by a close working alliance between developer and user, between production and practice.

Partners achieve more together. We do everything possible to ensure that our customers always have access to the ideal product and system solution. KSB is a loyal partner:

- Over 147 years' experience
- Present in more than 100 countries
- More than 15,000 employees
- More than 170 service centres worldwide
- Approximately 3,000 service specialists

Smart services for maximum availability and efficiency

As a leading supplier of pumps and valves, we attach great importance to providing you with a comprehensive service of the highest quality. In fact, we believe it's so important that we even gave it a special name: KSB SupremeServ.

KSB SupremeServ is on hand to support you with classic and digital service and spare parts solutions over the entire product life cycle. Whether it's a KSB product, non-KSB product or other rotating equipment, you'll benefit from the reliable and sustainable operation of your system.

Applications:

Industry

- Water and Waste Water
 - Energy Building Services
- Mining
- Wherever and whenever you need us, we're there for you worldwide. www.ksb.com

Our mission: Certified quality assurance

First-class products and excellent service take top priority at KSB. To maintain this level of excellence, we have developed a modern quality management system with globally applicable guidelines. It is based on the Business Excellence model of the European Foundation for Quality Management, which already ensures improved quality management Europewide.

Our guidelines define uniform quality for all KSB locations and have helped us to optimise our manufacturing processes. The results are shorter delivery times and global availability of our products. These guidelines govern the way we act so comprehensively that even the competence of our consulting and the good value for money we offer are clearly stipulated. Like the 'Made in Germany' quality seal, we introduced internal certification as a sign of the highest quality: 'Made by KSB'.

Our five key goals:

- Maximum customer satisfaction: We do everything to fulfil our customers' wishes on time and in full.
- Fostering quality awareness: We put our quality commitment into daily practice – from executives to employees, whose qualifications and competence we foster through continuing training.
- **Prevention rather than cure:** We systematically analyse errors and prevent the causes.
- Improvement in quality: We continually optimise our processes in order to work more efficiently.
- Involvement of suppliers: We attach great importance to working together fairly and openly to achieve our shared goals.

As a signatory to the United Nations Global Compact, KSB is committed to endorsing the ten principles of the international community in the areas of human rights, labour standards, environmental protection and anticorruption.

Industry 4.0: we have experience with the future

Digital networking of production systems is one of the key challenges ahead. An expert in engineering with long-standing experience in developing Industry 4.0 solutions, KSB is your ideal partner to achieve:

- Resource efficiency and optimised use of materials
- Availability and operating reliability
- Flexibility through short-term reconfigurability
- Reduction of time to market

Increase your system's productivity already today with KSB's smart products and services: Use our intelligent technologies designed to communicate, such as PumpDrive and PumpMeter, to lay a foundation for your smart factory. Find out more about our future-driven solutions at www.ksb.com/industry40

FluidFuture[®]: the energy-saving concept for your system

Many systems do run reliably but they also use a lot more power than necessary. The solution: efficiency optimisation with FluidFuture[®] in four steps. We look at the entire hydraulic system to achieve maximum energy efficiency throughout the life cycle. The optimisation costs will pay for themselves within a short period through the high energy savings that can be made.

The process and its four steps are clearly defined – based on extensive expertise and experience. This systematic and targeted approach ensures maximum savings at minimum costs. Perfectly matching the hydraulic system, drive and automation products as well as the piping dimensions can result in savings of up to 60 %. We reduce the operating costs of your system by combining our expert knowledge with smart products and services. This is our joint contribution towards an energy-efficient future.

More on FluidFuture[®]: www.ksb.com/fluidfuture

8

General Information

ErP	ErP regulations stipulating new, stricter minimum efficiency values became effective at the start of 2015. Since then, only pumps and motors which satisfy the energy efficiency requirements of the European Union's ErP Directive may be placed on the market. For KSB's products this is child's play. They are so efficient, many actually exceed the values required since 2015 – some even those applicable from 2017 as per the ErP regulations.
Regional products	Not all depicted products are available for sale in every country. Products only available in individual regions are indicated accordingly. Please contact your sales representative for details.
Trademark rights	All trademarks or company logos shown in the catalogue are protected by trademark rights owned by KSB SE & Co. KGaA and/or a KSB Group company. The absence of the "®" symbol should not be interpreted to mean that the term is not a registered trademark.
Product illustrations	The products illustrated as examples may include options and accessories incurring a surcharge. Subject to modifications due to technical enhancements.
Product information	For information as per chemicals Regulation (EC) No 1907/2006 (REACH), see www.ksb.com/reach.

Pumps

				Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Design / Application	Type series	Page	ErP	Fac	Autava	Wa Wa	Ind	Ene	Bui	Sol
	Calio-Therm S NC/NCV	30								
Drinking water circulators, fixed speed	Calio-Therm NC	30								
Drinking water circulators, variable speed	Calio-Therm S	30								
	Calio S	30								
Circulators, variable speed	Calio	31								
	Calio Z	31								
	Etaline L	31								
	Etaline DL	31								
	Etaline	32								
	Etaline Z	32								
In-line pumps	Etaline-R	32								
	ILN	32								
	ILNC	33								
	Megaline	33								
	Etanorm	33								
	Etanorm-R	33								
	Etabloc	34								
	Etachrom B	34								
Standardised / close-coupled pumps	Etachrom L	34								
	Etanorm V	34								
	Meganorm	35								
	Megabloc	35								
	HPK-L	35								
Hot water pumps	НРН	35								
	НРК	35								
	Etanorm SYT / RSY	36								
Hot water / thermal oil pumps	Etabloc SYT	36								
	Etaline SYT	36								
	MegaCPK	36								
Standardised chemical pumps	CPKN	37								
	Magnochem	38								
	Magnochem 685	38								
Seal-less pumps	Magnochem-Bloc	38								
	Etaseco / Etaseco-I	38								
	Etaseco RVP	38								
	RPH	39								
	RPH-LF	39								
	RPHb / RPHd	39								
	RPH-V	39								
	CTN	39								
	CHTR	40								
Process pumps	CHTRa	40								
	CINCP / CINCN	40								
	INVCP	40								
	Estigia	40								
	RWCP / RWCN	41								
	WKTR	41								
Deinwesten komzestin n	Hya-Rain / Hya-Rain N	42								
Rainwater harvesting systems	Hya-Rain Eco	42								

						σ				
				Factory-automated		Water Transport and Water Treatment		Energy Conversion	ses	ť
				ntom	ы	nspc atme		nver	Building Services	Solids Transport
				ry-aı	natio Ible	r Tra r Tre	try	y Co	ng S	Tra
Design / Application	Type series	Page	ErP	acto	Automation available	Vatei Vatei	Industry	nerg	uildi	olids
		-	ш	ш			-	ш		S
	Multi Eco Multi Eco-Pro	42								
		42				-				
Domestic water supply systems with automatic control unit / swimming pool pumps	Ixo N	43				-				
	Ixo-Pro	43			_	-				
	Filtra N	43								
	KSB Delta Macro F/VC/SVP	43								
	KSB Delta Solo/Basic Compact MVP	44								
	KSB Delta Basic MVP/SVP	44								
	KSB Delta Primo F/VC/SVP	44								
	KSB Delta Solo MVP/SVP	44								
	Hya-Solo D	44								
	Hya-Solo DSV	45								
	Hya-Solo D FL	45								
	Hya-Duo D FL	45								
Pressure booster systems	Hya-Solo D FL Compact	45								
	Hya-Duo D FL Compact	45								
	Hyamat K	46				_			_	
	Hyamat V	46								
	Hyamat SVP	46					-			
	Hyamat SVP ECO Surpresschrom SIC.2	46		-		-	-		-	
	Surpresschrom SIC.2 V	40		-		-			-	
	Surpresschrom SIC.2 SVP	47		-			-			
	Surpress Feu SFE	47								
	Ama-Drainer N	47								
	Ama-Drainer 4 / 5	47								
	Ama-Drainer 80, 100	48								
Drainage pumps / waste water pumps	Ama-Porter F / S	48								
	Rotex	48								
	MK / MKY	48								
	Amaclean	48								
	Ama-Drainer-Box Mini	49								
	Ama-Drainer-Box	49								
	Evamatic-Box N	49								
	mini-Compacta	49								
Lifting units / package pump stations	Compacta	49								
	CK 800 Pump Station	50				_	_			
	CK 1000 Pump Station	50				_			_	
	Ama-Porter CK Pump Station SRP	50								
	SRL	50			-				-	
	SRS	50							-	
	Amarex	52			-				-	
Submersible motor pumps	Amarex N	52			-	-	-		-	
	Amarex KRT	52			-	-	-		-	
	Amacan K	52			-		_		_	
Submersible pumps in discharge tubes	Amacan P	53								
	Amacan S	53								
	Amamix	54								
Mixers / agitators / tank cleaning units	Amaprop	54								
	Amaline	54								

	55 55 55 56 56 56 56 56 56 56 57 57 57 57 57 57 57 57 58 58 58 59 59						•		
	55 55 56 56 56 56 56 56 57 57 57 57 57 57 57 57 57 58 58 58 58 59 59					•	•		
	55 56 56 56 56 56 57 57 57 57 57 57 57 57 58 58 58 58 59 59					•	•		
	55 56 56 56 57 57 57 57 57 57 57 57 58 58 58 58 59 59					•	•		
	56 56 56 57 57 57 57 57 57 57 57 58 58 58 58 59 59					•	•		
	56 56 57 57 57 57 57 57 57 58 58 58 58 59 59					•			8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	56 56 57 57 57 57 57 57 58 58 58 58 59 59					•			
	56 57 57 57 57 57 57 58 58 58 58 59 59					•			* * * * * *
	56 57 57 57 57 57 57 58 58 58 59 59					•			
	57 57 57 57 57 58 58 58 59 59					•			* * * *
	57 57 57 58 58 58 59 59					•			
	57 57 57 58 58 58 59 59					•			•
	57 57 58 58 59 59								
	57 58 58 59 59								
	58 58 59 59								
	58 59 59								
	59 59								
	59								
	59								
	59								
	59								
0 CC	60								
0 CN	60								
	60								
3, 250C	60			-		-		_	
, 2000	60			-					
	61			-	_	-			
	61			-	_	-			
	61			-	_	-			
	62					-	-		
	62			-		-		-	
							-		
		-							
									-
	04								
	61								
	64 65					-			
		62 62 63 63 63 63 63 63 64	62 ■ 62 ■ 63 63 63 63 63 63 63 63 63 63 63 63 64 64	62 ■ 62 ■ 63 63 63 63 63 63 63 63 64 64	62 1 62 1 62 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 64 1 64 1	62 1 62 1 62 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1 64 1 64 1	62 1 1 1 62 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 63 1 1 1 64 1 1 1 64 1 1 1 64 1 1 1	62 1 1 1 1 62 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 64 1 1 1 1 64 1 1 1 1 64 1 1 1 1	62 1 1 1 1 62 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 63 1 1 1 1 64 1 1 1 1 64 1 1 1 1 64 1 1 1 1

Design / Application	Type series	Page	ErP	Factory-automated	Automation available	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
	CHTA / CHTC / CHTD	65								
	HGB / HGC / HGD	65								
	HGI	66								
	HGM	66								
	YNK	66								
	LUV / LUVA	66								
	WKTB	66								
Pumps for power station conventional islands	SEZ	67								
	SEZT	67								
	PHZ	67								
	PNZ	67								
	SNW	67								
	PNW	68								
	Beveron	68								
	SPY	68								
	RER	68								
	RSR	68								
	RUV	69								
	PSR	69								
	RHD	69								
Pumps for nuclear power stations	LUV Nuclear	69								
	RHM	69								
	RVM	70								
	RHR	70								
	RVR	70								
	RVT	70								
	RPH-RO	70								
Pumps for desalination by reverse osmosis	HGM-RO	71								
	Multitec-RO	71								
Positive displacement pumps	RC / RCV	71								
	EDS	71								
Fire-fighting systems	DU / EU	72								

Design / Application	Type series	Page	ErP	Water Transport and Water Treatment	Industry	Energy Conversion	Building Services	Solids Transport
Automation and drives	KSB SuPremE	28						
	KSB UMA-S	28						
	Controlmatic E	73						
	Controlmatic E.2	73						
Control units	Cervomatic EDP.2	73						
control units	LevelControl Basic 2	73						
	UPA Control	73						
	Hyatronic N	74						
Veriable speed systems	PumpDrive 2 / PumpDrive 2 Eco	28						
Variable speed systems	PumpDrive R	28						
	PumpMeter	29						
Monitoring and diagnosis	KSB Guard	29						
Monitoring and diagnosis	Amacontrol II	74						
	Amacontrol III	74						

	Calio-Therm S NC/NCV	NC		s																											
	herm	herm		herm					_	Ы	z	ų			e	E	n-R		m B	m L	۲ ۲	orm	ŏ								
	alio.T	Calio-Therm NC		Calio-Therm S	:	Calio S	Calio Z		Etaline L	Etaline DL Etaline	Etaline Z	taline-	ILN	: IINC	Megaline	Etanorm	Etanorm-R	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc								
Waste water with faeces											, ш 	<u> </u>	=	= ·			<u> </u>	ш 	ш 	ш 	ш 	2	2								
Waste water without faeces	aad		circulators, variable speed		Circulators, variable speed			In-line pumps																							
Aggressive liquids	ed s		ole s		ole s			d e								2															
Inorganic liquids	, fix		ariał		ariat		\perp	-li-																\square	$ \rightarrow$	\downarrow	\perp	\perp	_	\perp	L
Activated sludge	tors	_	S, Võ	_	s, va	_	_	_ =			_					5							_		_	_	+	_	_	\vdash	L
Brackish water	ula.	+_	tor		tor	_	+	_		_										_			_		\rightarrow	\rightarrow	+	+	+	-	╞
Service water Distillate	- cir		cula	•	cula	_	+	-							- 1						_		_		\rightarrow	+	+	+	+-	-	┝
Slurries	ater	+-	- Ċ		÷		+-	-		-+	-				lsec		-			\rightarrow	\neg		_	\rightarrow	+	+	+	+	+-	+	┢
Explosive liquids	N C	+	ater	-	-		+	-	\vdash		-	$\left \right $	\vdash		ard		-	\mid		+	+		_	\neg	+	+	+	+	+	+	\vdash
Digested sludge	king	+	- × b		-	+	+	-	\vdash		+	\vdash	\vdash	\square	Standardised / close-coupled		-	\vdash		+	\dashv		_	\neg	+	+	+	+	+	+	┢
Solids (ore, sand, gravel, ash)	Drinking water circulators, fixed speed	+	Drinking water	-	-	+	+	-		+	+		\vdash	\vdash	- t	- r	-	\vdash		\neg	\neg		-	\rightarrow	+	+	+	+	+	+	\vdash
Flammable liquids		+	T rin				+	-			+						-	\square		+	\neg			\neg	+	+	+	+	+	+	\vdash
River, lake and groundwater		+			-	-	+	-			1	\square								\neg	\neg			\neg	+	+	+	+	+	+	\vdash
Liquefied gas		1				+	+				1						1				1			\neg	+	+	+	+	1	1	
Food and beverage production		1					+	-									1								\neg	+	+	1	\uparrow	1	F
Gas-containing liquids								1																							
Gas turbine fuels		1						-																			T	T	\square		Γ
Filtered water																															
Geothermal water																															
Harmful liquids																															L
Toxic liquids																							_								
High-temperature hot water		_					_				_													$ \rightarrow$	\rightarrow	\rightarrow	\perp	_	<u> </u>	-	L
Heating water	- -							_												-+	_				\rightarrow	\rightarrow	+	_	+-	-	╞
Highly aggressive liquids Industrial service water	-				-	_	+	-																	\rightarrow	+	+	+	+-	+	┝
Condensate				-	-		+	-							-	⊢		-		-		-	-		+	+	+	+	+	+	┢
Corrosive liquids		+			-		+-	-	\vdash		-				-		-			\rightarrow			_	\rightarrow	+	-	+	+	+	+	┢
Valuable liquids		+		-	-		+	-			-				-	-	-						-		-	-	+	+	+	+	┢
Fuels		+			-	+	+	-									-								+	-	+	-	+	+	┢
Coolants		+			-	+	+	-									1						-		\neg	-	+	+	+	+	┢
Cooling lubricant		+				-	+	-																	-	-	+	+	+	+	F
Cooling water								-																	+	-	+	+	+	+	F
Volatile liquids																															
Fire-fighting water																															
Solvents																															
Seawater							\perp		\square																			\perp			\bot
Oils							\perp		\square															\square	\square	\perp	\perp	\perp	\perp		L
Organic liquids		_		<u> </u>			_	_					\square		_	_	_						_		$ \rightarrow$	\downarrow	\perp	\perp	1	1	L
Pharmaceutical fluids		_		<u> </u>			+	_	-		_				_		_			$ \rightarrow$			_		\rightarrow	\downarrow	+	+	+	\vdash	╞
Polymerising liquids		_		<u> </u>	_	_	+	-	\vdash		_	\vdash			_	-	_			$ \rightarrow$			_	$ \rightarrow$	\rightarrow	\rightarrow	+	+	+-	+	\vdash
Rainwater / stormwater		_		-	-	_	+	-	-		_	$\mid \mid$	╞		_	-	-				\rightarrow	_	_		+	+	+	+	+-		┢
Cleaning agents Raw sludge		+	-	-	-	_	+	-	\vdash	_	-				_	-	-			-	_		-		+	+	+	+	+	+	\vdash
Lubricants		+-	-	-	-		+	-	\vdash		-	$\left - \right $	\vdash	-+	-	-	-	\vdash		+	\neg		_	\neg	\rightarrow	+	+	+	+	+	┢
Grey water	-	+	-	-	-		+-	-	\vdash		+		\vdash		-	-	-	\vdash		\rightarrow	\neg		_	\neg	+	+	+	+	+	+	┢
Swimming pool water		+		-	-	+	+	-	\vdash		+										\neg				+	+	+	+	+	+	┢
Brine		+			-	+	+	-			+				-					-	\dashv	-	-	\neg	+	+	+	+	+	1	\vdash
Feed water		+				\neg	+									Ē	<u> </u>	Ē		\uparrow	\neg			\neg	+	+	+	+	+	1	\vdash
Dipping paints		1					+					\square					1					-			+	+	+	+	1	1	
Drinking water																															
Thermal oil																															
						_ [2				- T2	1	1 1		_			1-	1-1		-T	î	-1	_1	. 1					1	1	1
Hot water Wash water					_			'-								_								_	\rightarrow			_	_	+	<u> </u>

I lands Harraned																														
																											z			
					≻								. –														Hya-Rain / Hya-Rain N			
					Etanorm SYT / RSY							52	Magnocnem-bloc Etaseco / Etaseco-l														Ř			
					È.						<u>د</u>	9	ase ase	~			-					5		Z	j –		ž	0		
					Š	뒷누		\sim			Jer	Jer 1	Ē	Ž			H							Š	1		Ξ	ŭ		
					Ē	Etabloc SYT Etaline SYT		MegaCPK			Magnochem	Magnochem 685		Etaseco RVP			кгп-цг RPHb / RPHd				CHTRa	< .		RWCP / RWCN			ain	Hya-Rain Eco		
		нри г			2	li B		ga	CPKN		gn	gn	a g	sec		÷ 3	RPHb /	RPH-V	7	CHTR	CHTRa		Estidia	ຸ ບິ	WKTR		Å.	Ϋ́-Β		
	4		НЪ		Eta	Eta Eta		Ř	ē		ğ	g 3	Eta	Eta		RPH		RP	E	E	5		ť	Š	ž		Ť	Ě		
Waste water with faeces				_					-					_					-	-	-		-							
	Hot water pumps	_	_	Hot water / thermal oil pumps	\vdash	_	Standardised chemical pumps	-		l-less pumps	_		_		Process pumps		_	-					_	_	_	Rainwater harvesting systems		\vdash		
Waste water without faeces	bur		_	bu			- na			bur					bur			-		_	_					/ste		\square		
Aggressive liquids	er			i			la la			SS				_	SS	_								_		g s				
Inorganic liquids	vat			al			ц.			-					US -									_		tin		\square		
Activated sludge	1			L L			he			Seal					2										<u> </u>	Ves				
Brackish water	ゴ			the			g																	1		har				
Service water	1 [er /			dise																		I T	er				
Distillate	1 6			ate			lar																	i T	1	vat				
Slurries			+	S T			and				\neg		-								+	+	+	┢	+	i.c				
Explosive liquids		+	+	£	\vdash		St.												\vdash			+		+		Ra	\vdash	\vdash		\neg
Digested sludge			+-		\vdash			-		-	-			+	-	-		-	\vdash	-	-	+	+-	+	┿╸		\vdash	┝─┤	\dashv	-
		_			\vdash	_	-	-	$\left - \right $		-+	_		+		-+	_		\vdash	_	-+	_	+	+-	+-	-	\vdash	\vdash		_
Solids (ore, sand, gravel, ash)	┥┝	_				_	-			-	\rightarrow		_		-	-+		-		_	\rightarrow	_	_		_	-		\vdash		_
Flammable liquids							-								-											-				
River, lake and groundwater																														
Liquefied gas																														
Food and beverage production																														
Gas-containing liquids	1 [Т			ī]				
Gas turbine fuels	1										Í					Ť					Ť				1	1				1
Filtered water													1		-								+	+	+					
Geothermal water			+-			_					\rightarrow		+		-				-	-	+	+	+	+	+					-
Harmful liquids	┥┝	+	+		\vdash					-					-							+		+				\vdash		\neg
Toxic liquids	┥╴┝				\vdash	_	-			-					-											-	\vdash	\vdash		_
							-			-					-			-			_	_		-	┼┻	-		\vdash		_
High-temperature hot water								•		-		•			-		_	-				_	+	+	+-	-		\vdash		
Heating water					\vdash										-								+	_				\square		
Highly aggressive liquids																							\perp							
Industrial service water																									<u> </u>					
Condensate																														
Corrosive liquids																														
Valuable liquids	1			1																				ı T		1				T
Fuels	1 -						1								-									i T		1				
Coolants			-							-					-			+-		-	-			_	+-					\neg
Cooling lubricant	1 -				\vdash					-	-			-	-		-	-			+	+			+			\vdash		\neg
Cooling water	1 -	_			\vdash		$\left\{ \right\}$			-	_	_		-	-	_		+		\rightarrow	+	+		_	+		\vdash	\vdash		-
	4 -			-	\vdash	_	-			-	_				-					_	_				+_	-		\vdash		_
Volatile liquids	┥				\vdash					-					-									4		-				
Fire-fighting water																							\perp	\perp						
Solvents																														
Seawater																									I					
Oils																										1				
Organic liquids				-																										
Pharmaceutical fluids											\neg	+				+			\square			+	+	+	+	1				-
Polymerising liquids		+	+							-					-			+			+	+		+	+					-
Rainwater / stormwater		+	+-		\vdash			-			-			+		+	+	+			+	+			+-				\neg	-
Cleaning agents		_	+-			_				-					-			-						_	+-					_
	┥	_	_	-			-	Ľ.		-	-			-	-			-		_			╧┼═		·	-		\vdash		_
Raw sludge		_	_	-	\vdash		-	_		-	_	_	_	_	-		_	_			_	_	_	+	_	-		\square		
Lubricants																							1							
Grey water																									<u>(</u>					
Swimming pool water																														
Brine	1 [Т			ī]		\square		
Feed water																							\top	1	1					
Dipping paints		+	1													+		1			\neg			+	1	1				
Drinking water		+	+-		\vdash						_					+	-	1	\square				_		1					-
								F			_			1				-	\vdash								\vdash	\vdash		\neg
																									4.1	1.00				
Thermal oil															ŀ			+					_		+			┝─┼		
-																_										-				

		Multi Eco	Multi Eco-Pro Multi Eco-Too		lxo Pro	Filtra N	KSB Delta Macro F/VC/SVP	KSB Delta Solo/Basic Compact MVP	KSB Delta Basic MVP/SVP	KSB Delta Primo F/VC/SVP	KSB Delta Solo MVP/SVP	Hya-Solo D	Hya-Solo DSV	Hya-Solo D FL	Hya-Duo D FL Hya-Solo D Fl Compact	Hya-Duo D FL Compact	Hyamat K	Hyamat V	Hyamat SVP	Hyamat SVP ECO	Surpresschrom SIC.2	Surpresschrom SIC.2 V	Surpresschrom SIC.2 SVP	Surpress Feu SFE							
Waste water with faeces		_						1								1	<u> </u>		_		-	-	-	•.							
Waste water with faces	E E	\rightarrow					en -	+	-							+-									\rightarrow			+-	+		
Aggressive liquids	bn	+		-			syst	+							-	+			_			_	_					+	-		_
Inorganic liquids		+		-			booster systems	+					-		+	+-						_	-	_	\rightarrow			+-	+		
Activated sludge	р Д			1			000	+					+		+	+						_	_	_				+	1		_
Brackish water	ц.		\neg	1				+	1						+	+									\neg			+	+		-
Service water	Ę.						Pressure	1														_	_	_					1		
Distillate	/ s/						Pre															_	_						1		
Slurries	Domestic water supply systems with automatic control unit / swimming pool pumps								1				1												\neg	1					
Explosive liquids	0							1					╈													\neg					
Digested sludge	onti																											1			
Solids (ore, sand, gravel, ash)	ic C																														
Flammable liquids	nat																														
River, lake and groundwater	Itor																														
Liquefied gas	า ลเ																														
Food and beverage production	witl																														
Gas-containing liquids	ms.																														
Gas turbine fuels	/ste																														
Filtered water	ly s)																														
Geothermal water	dd																						_								
Harmful liquids	er su					_		_								_												_	_		
Toxic liquids	/ate							_				_			_	_							_		\rightarrow			_			
High-temperature hot water	- <u>-</u>	_	_	_		_	-		_	\square			_	_	_	_									_	_	_	_	-		
Heating water	Jest	\rightarrow		_		_	-		-				_	_	_	-	\vdash								\rightarrow						-
Highly aggressive liquids Industrial service water	- No	-	_	_		_			-			_	_	_	_	-			_	_	_	_	_		_	_	_	-	-		+
Condensate		+	_	+-	$\left - \right $	_			-					_		+-	-		-		-	-	-		\rightarrow	-	_	+-	+		_
Corrosive liquids	- 1	+	_		$\left \right $	_	-	+	-				-	_		+-	\vdash		_		_							+-	+		_
Valuable liquids		+	_	+			-	+	-			-	+		+	+-						_			\rightarrow	-+		+-	+		-
Fuels	-	\rightarrow		+-			-	+	-			-+	+		+	+-			_			_	_		\rightarrow	-		+-	+		
Coolants		+						+	-				-		+	+-			_						\rightarrow			+-	+		_
Cooling lubricant		+		+				+-	-	\vdash		\rightarrow	+		+	+			_			_	_	_	\rightarrow		-	+	-		
Cooling water		-	-					+					-		+	+						_	_	_				+-	1		
Volatile liquids		+		-				+					+		+	+						_	_		-			+	-		
Fire-fighting water		+		1				1		H		\neg	\neg				\square								\rightarrow	\neg	+	+	1		-
Solvents		\uparrow	\neg	1	\square			1	1	\square				+			\square								\neg	\uparrow	+		1		1
Seawater								1	1				1			1									\neg	\uparrow					
Oils								1					1													\neg					
Organic liquids																															
Pharmaceutical fluids																															
Polymerising liquids																															
Rainwater / stormwater		_[
Cleaning agents																															
Raw sludge																													_		\perp
Lubricants				_				_		Ц						_													_	\square	\perp
Grey water				_				_		\square	\square					_												_	_		\perp
Swimming pool water				_		-									-	_									-	\parallel		_	-		
Brine		\rightarrow		_	$\left \right $	_		-	-	$\left - \right $	\vdash		+		_		\square	\square	_						-+	-	_	_			-
Feed water	-	\rightarrow		_	$\left \right $				-	$\left - \right $	\vdash		+		_		\vdash	\square	_		_				\rightarrow	\dashv		_			\rightarrow
Dipping paints		_		-	$\left \right $	_							+	_	+	+-					_				\rightarrow	+	+		-	$\left \right $	-
Drinking water Thermal oil		-			$\left - \right $	_			-	╞═┤			-	+	_				-		-		-		\rightarrow	+	-		-	$\left - \right $	+
Hot water		+	+	+-	$\left - \right $	_		+	-	$\left - \right $	\vdash	-+	+	+		+-	\vdash		_	$ \rightarrow $		_	_		\rightarrow	+	+	+-	-	$\left - \right $	\rightarrow
Wash water	-	+	+	+	$\left \right $			+	-	\vdash	\vdash	+	+	+	+	+-		\square	_			_	_		\dashv	+	+	-	-	$\left - \right $	+
vvdsi vvdci									1																						

															Ama-Porter CK Pump Station																
															ati																
									Ξ				_	c	ş																
		5	8					1					ou	tio	đ																
		Ama-Drainer 4 / 5	Ama-Drainer 80, 100	S				2	Ama-Drainer-Box Milli Ama-Drainer-Box	5 _			CK 800 Pump Station	CK 1000 Pump Station	Pu																
	Ama-Drainer N	4	8	Ama-Porter F / S				à	Ama-Drainer-Box Ama-Drainer-Box	Evamatic-Box N	mini-Compacta		ŝ	đ	X																
		e je	٦e	P. F				à	ע ע	ß g	Jac		g	E E	er O						RT										
	i.	ai. a	ai.	Ť		≥	Ę	<u>ة</u> 1		<u>י</u> , מ	Ē	cta	Pu	ЪЪ	Ť					, z	£										
	Ģ	şφ	Ā	Ă	×	MK / MKY	acoloca A	3 4	Ā Ā	lat d	ų	Compacta	8	ē	Å				Amarex	Amarex N	Amarex KRT										
		ma a	ma	ma	Rotex	¥	5	2 <u>9</u>	2 2	/an	Ē	E	8	5	ma	SRP	SRL	22	ma	ma 1	ma										
	4	< ₹	₹	Ā	Ř	Σ	<	< <	< 4	сú	Ε	ŭ	σ	σ	₹	S	5 5	7	Ā	₹	₹										
Waste water with faeces	S						S												S 📕												_
Waste water without faeces	Ĕ,					─ .	E I												sdund					1						+	_
Aggressive liquids	nd		-	-			tat						-	-	-	-			a –				-	-	+			+	\rightarrow		—
	ter	_	-	$\left \right $		-	d –	+	_		-							-	<u>b</u> –	+	-		_		+			-	\rightarrow	+	_
	Na	_	-			_	<u>ه</u>	_	_	_	<u> </u>							_	<u> </u>	_	-		_	_	$\left \right $				\rightarrow	\rightarrow	_
Activated sludge	te	_				_	a b	_										_	e u										\rightarrow	\rightarrow	_
Brackish water	vas						ag											-													
Service water	\leq						ack												l er												
Distillate	du						d/											-		Τ											_
Slurries	bur		1			:	lits											·	~	1	1		1		\square					\uparrow	_
Explosive liquids	ge	+	1		\vdash		5	+	+		1						\neg			\top	1		+	1		+			+	+	_
Digested sludge	naj	+	+	\vdash	\vdash	—	<u>o</u>	+	+	-	-	\square		\vdash		$\left - \right $	+	-[- -	+-	+	\vdash	\vdash			+	+	—
<u>_</u>	Drainage pumps / waste water pumps	-		\vdash	\vdash	-	Lifting units / package pump stations	+	_	_	-	-	$ \vdash $	\vdash		-	-+	_			-	\vdash	+		\vdash	\square			\rightarrow	+	_
Solids (ore, sand, gravel, ash)		-	-	\square	\square			_	+	_	-			\vdash				_	-	_	-		_		$\left \right $			_	+	+	
Flammable liquids		_	_	\square	\square			_	_	_	-			\square				_	-	_	-	- -	_	_	\square			_	\rightarrow	+	_
River, lake and groundwater																															_
Liquefied gas																															
Food and beverage production																															
Gas-containing liquids			1																				1		\square						_
Gas turbine fuels			1						1		1									1	1									+	_
Filtered water		+-	+	$\left - \right $				+	+	-	-		-					-		+			-	+	+			+		+	—
Geothermal water	-		+			_		+	-	-	-	-	_						-	-	-		-	-	+				\rightarrow	+	_
		_	+	$\left - \right $				+	_		-							_	-	-			-		$\left \right $				\rightarrow	+	_
Harmful liquids	-	_				_	-	_	_	_								_		_	-		_	-	$\left \right $				\rightarrow	+	_
Toxic liquids	_		_							_									_									_		\rightarrow	_
High-temperature hot water																													\square		
Heating water																															
Highly aggressive liquids																															
Industrial service water																														Т	_
Condensate			1																											\neg	_
Corrosive liquids			1																									-		+	_
Valuable liquids	-		-			-		+			-				_			_		+	+-		-	-	+			+			_
Fuels		+-	+	$\left - \right $				+	+		-								-	+-	-		-	+	+				\rightarrow	+	_
	-	_	+	\vdash		_		+	_	_	-						_	_		+	-		_	-	$\left \right $				\rightarrow	+	_
Coolants			-			_				_								_		_			_	_				_		+	
Cooling lubricant		_	-	\square	\square				_	_	-								-	_	-		_	-					\rightarrow	\perp	
Cooling water																															
Volatile liquids					LT									LĨ																	
Fire-fighting water		Τ						Τ	T											T				Τ						T	
Solvents				\square				1			1									1	1			1	\square					+	_
Seawater		+	1	\square	\vdash			+	+								+	_					1	1	\vdash	+		+		+	_
Oils	-	+	+	\vdash	\vdash			+	+	-	-			\vdash				-		+	1-		+	+	+	+		+	+	+	—
	-	+-	+	$\left - \right $	\vdash	-		+		_	-	$\left - \right $	\vdash	\vdash		$\left - \right $	-+	_	-	+	-	\vdash	+		$\left - \right $	\vdash	_		\rightarrow	+	_
Organic liquids	_	+		\vdash	\vdash	_		+	_	_				\vdash			-+	_	-	-	-	- -	_		$\left \right $	\vdash			\rightarrow	+	_
Pharmaceutical fluids	_	_	_	\square	\square	_		+	_	_	-								_	_	-		_	_				_	\rightarrow	+	
Polymerising liquids		_		\square	\square						_											\square	_	_	\square				\square	\perp	_
Rainwater / stormwater																															
Cleaning agents																															
Raw sludge																															_
Lubricants											1									1	1		1							\uparrow	_
Grey water																							1	1	\square	\dashv			\neg	+	_
Swimming pool water		┼╴	+-		-+	-		+	+-	+-	-	F	-		_		-+ ·	-[+	<u> </u>		+	+	$\left \right $		+		+	+	_
Brine		+-	+	\vdash	\vdash	_		+	+				\vdash	\vdash			-+	-[+		\vdash	+-		$\left - \right $	\vdash			\rightarrow	+	_
Feed water	-	+-	+	\vdash	\vdash	_		+	+		-			$\left - \right $		-	-+	_	-	+	-			+	$\left \right $	-+	_		\rightarrow	+	—
	-	+	-	\vdash	\vdash	_		+	+		-	$\left - \right $		$\left - \right $		$\left - \right $		_	-	-	-	\vdash	-		$\left \cdot \right $	\square			+	+	
Dipping paints				\vdash	\vdash	_		_	_	_				\vdash			_	-[-	-	-	\vdash	-		\square	\square	_	+	\rightarrow	+	_
Drinking water	_	_	-	\square	\square	_												_	_	-			-	-					\rightarrow	+	
Thermal oil		_	-	\square	\square					_	<u> </u>			\square						_	-	\square	_	-					\rightarrow	\perp	
Hot water																			_												
Wash water																															
						-				_	_		_					-					_	_			_			_	

										Z																				00		
		Amacan K Amacan P	Amacan S		Amamix	Amaprop	Amaline		Sewatec	Sewatec SPN	Sewabloc	KWP	KWP-Bloc		WBC	LSA-S	LCC-R	TBC	LCV	FGD		MDX	ZW	HVF		Etaprime L	Etaprime B	EZ B/L	AU	AU Monobloc		
Waste water with faeces	es			units				ds			-	-		sdi											sd	\square			\square			\perp
Waste water without faeces	tub			l n			•	flui						m											m						\perp	\perp
Aggressive liquids			_	cleaning			_	den						Slurry pumps								_	-		Self-priming pumps						+	+
Inorganic liquids	- cha	_	_	lear			_	s-la	_		_	-		Slui	_		_	_			_	_	-		.i.	\vdash	\rightarrow		\vdash	-	+	+
Activated sludge	gi			녿			-	olid				\rightarrow	_	-	_	_	_	-			_	-			f-pr						+	+
Brackish water Service water	os ir			/ tai			_	or so			\rightarrow			-	_	_	_					+	+		Sel				┝═┤	-	+	+
Distillate	Ē			ors			-	ps f			\rightarrow	-	-	ŀ		+	+	+				+	+			-	-		\vdash	+	+	+
Slurries		+	+-	agitators / tank		\vdash	\neg	Pumps for solids-laden fluids	\vdash		\dashv															\dashv	+	\neg	\vdash	+	+	+
Explosive liquids	sib	+	+					₽.			\dashv	_	-		_		+	+-	-			+	+-	\exists		\neg	+		\square	+	+	+
Digested sludge	mer	+	1	Mixers /								+			+	+	+	1	\square	\square	+	1	\vdash	\square		\neg	+		\square	+	+	╈
Solids (ore, sand, gravel, ash)	Sub		1	Mix							-															\neg	\uparrow		\square	\neg	+	\uparrow
Flammable liquids											\neg	\uparrow			\uparrow			1				1	1	\square			\neg			\neg	1	T
River, lake and groundwater																																
 Liquefied gas																																
Food and beverage production																																
Gas-containing liquids																													\square			
Gas turbine fuels																										\square			\square			
Filtered water				_																									Ц			
Geothermal water				_																			_			\vdash	$ \rightarrow$		Ц	\perp	\perp	\perp
Harmful liquids			_	_							_	_		-				_			_	_	_			\vdash	$ \rightarrow$		\square	\square	\perp	\perp
Toxic liquids		_	_	-			_				\rightarrow	\rightarrow	_	-		_	_	_				-				$ \rightarrow$	\rightarrow		\vdash	\rightarrow	+	+
High-temperature hot water	┥┝	_	_	-			_				\rightarrow	-		-	_	_	_					+	-		-	\vdash	\rightarrow		\vdash	\rightarrow	+	+
Heating water	4 -	+	-	-			_				-	_	_	-	_	_	+	-			_	+	-			$ \rightarrow$	\rightarrow		\vdash	-	+	+
Highly aggressive liquids Industrial service water				-			_				\rightarrow		_	-	_		+	+			_	+	+		ŀ	$ \rightarrow$	\rightarrow		\vdash	+	+	+
Condensate				-			_				-	-	-	-	-		+	-			_	+	-						\vdash	+	+	+
Corrosive liquids		+	+-	-			-							-	-							+	+			-	-		H	+	+	+
Valuable liquids		+	+-								\rightarrow	-	-	ŀ				-		-	+	+	+			\rightarrow	-		\vdash	+	+	+
Fuels		+	+									\neg		ŀ			+	+				+	1			\neg	-		\square	+	+	+
Coolants			1															1				\vdash	1						\square	-	+	+
Cooling lubricant			1											ŀ				1				1	1								1	╈
Cooling water																																
Volatile liquids																																
Fire-fighting water																																Γ
Solvents																													Ш			
Seawater						\square			\square									_					_	Ц							\perp	\downarrow
Oils			_				_				$ \downarrow$	$ \downarrow$			+	_	_	_			_	_	_	\square					\square	\perp	\perp	\downarrow
Organic liquids		_	_				_		-		\rightarrow	-	_	-	+	_	_	-	$\left - \right $		_	-	-	$\left - \right $		\rightarrow	\dashv	$ \rightarrow $	\vdash	+	+	+
Pharmaceutical fluids		_			$\left - \right $	\vdash	_		$\mid \mid$		-	-	_		+	_	_		\square		_	-	-			$ \rightarrow$	\dashv		\vdash	-	+	+
Polymerising liquids Rainwater / stormwater						\vdash	_					+	_	-	+	_	_	-	$\left - \right $		_	-		\vdash		$ \rightarrow$	\dashv	$ \rightarrow$	\vdash	-+	+	+
Cleaning agents			┤┛		$\left - \right $	\vdash	_					+	_	-	+	+	+	-	\vdash	\vdash	+	+-	-	\vdash			╞	\neg	⊢┤	-+	+	+
Raw sludge		+	+			\vdash	\neg					+	-		+	+	+	+		\vdash	+	+-	+	$\left - \right $		-	-	\neg	\vdash	+	+	+
Lubricants		+	+-			\vdash	-				-+	\dashv			+	+	+	+		\vdash	+	+	+	\square		\dashv	\neg	\neg		+	+	+
Grey water		+	+			\vdash									+					\vdash	+	+				\rightarrow	\neg				+	+
Swimming pool water		+	+							-	-+	+			+	+	+			\square		1	1						\square	+	+	+
Brine		+	+								\neg				+	+	+	1	\square			1	1					\neg	\square	+	+	+
Feed water		\top	1						\square		\neg	\uparrow			\uparrow			1					1			\neg				\neg	+	\uparrow
Dipping paints																																
Drinking water																																
Thermal oil												T																	\square			
Hot water																													Ш			\perp
Wash water																																

	11PAchrom 100 CC	UPAchrom 100 CN	UPA 150 C	UPA 200, 200B, 250C	UPA 300, 350	UPA 400-850		B Pump		Comeo	Movitec H(S)I	Movitec	Movitec VC	Multitec	Omega	RDLO	RDLP	Vitachrom	Vitacast/Vitacast Bloc	Vitaprime	Vitastage	Vitalobe		CHTA / CHTC / CHTD	HGB / HGC / HGD	HGI	HGM	YNK	LUV / LUVA	WKIB	
Waste water with faeces	sdu	_						<u>s</u>	sdu					sdu	-			les					spu		\dashv	$ \rightarrow$	\rightarrow	\downarrow			_
Waste water without faeces Aggressive liquids	- und		-	$\left \right $	-				und			_	-	und	-		_		+	_	-	-	islaı		\rightarrow	+	\rightarrow	\rightarrow		-	_
Aggressive inquids	lole	+-		$\left \right $	+			- e	ure		\rightarrow	\rightarrow	+	plit	-		-:	<u> </u>	+	+	\vdash		nal		\rightarrow	\rightarrow	\rightarrow	+			+
Activated sludge	Submersible borehole pumps	+					+urbino		High-pressure pumps			\neg	+	Axially split pumps	· —		-	- Itica	+	1	\square		power station conventional islands		\rightarrow	+	+	+			1
Brackish water	e p								d-hg					Axia				nege					onve								
Service water	rsib						- t-		Ξ														u co								
Distillate	ame						_[·	bhg	_	_			atio		\rightarrow	\rightarrow	$ \rightarrow$	\rightarrow			\rightarrow
Slurries Explosive liquids	- Sut		-	$\left \right $	-		-	-			-+	_	_	_	-		—	and	+		-	-	er st		_	\rightarrow	\rightarrow	+		_	_
Digested sludge		+	-		\neg	_						-		-				age	+	+	┢		MO			\rightarrow	\rightarrow	+	_	-	+
Solids (ore, sand, gravel, ash)		+	-		\dashv						\dashv	\neg	+			\vdash	_	beverage and pharmaceutical industries	+	-	1	H	or p		+	+	\dashv	+		+	+
Flammable liquids																		, pe					Pumps for								
River, lake and groundwater													_					Hygienic pumps for the food,					Pun			\square					
Liquefied gas		_										_						he	_	_	_				\rightarrow	\rightarrow	\rightarrow	\rightarrow			
Food and beverage production	$\left\{ \right\}$	_	_		\neg	_	_	-	-		_	_	_	_	-		_	or t							\rightarrow	_	\rightarrow	\rightarrow	_	_	+
Gas-containing liquids Gas turbine fuels	$\left\{ \right\}$		-		\rightarrow		-				\rightarrow	\rightarrow	_	-	-		—		+		\vdash					\rightarrow	\rightarrow	+		_	+
Filtered water	-	+-	-	$\left \right $	\neg						-+	+						- und	+	+	\vdash				-	\rightarrow	\rightarrow	+		+	-
Geothermal water		+-															-	ы П	┢	+	┢				\neg	-	\rightarrow	+			+
Harmful liquids																		ygie	╈						\neg	\uparrow	\neg	\uparrow			1
Toxic liquids																	-	Í													
High-temperature hot water	┥┝																														\perp
Heating water	$\left\{ \right\}$	_	-		-	_	_	-	-		_	_	_		•		_	-	+		_				\rightarrow	\rightarrow	\rightarrow	+	_	_	+
Highly aggressive liquids Industrial service water																		-	+	+	┢				\rightarrow	-	\rightarrow	+	_	-	+
Condensate			1		_			_		_				_					╈		\vdash										+
Corrosive liquids																															
Valuable liquids																															
Fuels		_					_										_		_	_	_				\rightarrow	\rightarrow	\rightarrow	\rightarrow			_
Coolants	$\left\{ \right\}$	_						-				_		_	-		_	-	-	-	_				\rightarrow		\rightarrow	+			+
Cooling lubricant Cooling water																			+	-	\vdash				\rightarrow	+	\rightarrow	+	_	+	+
Volatile liquids			-	-	-					-	-	-			F		-		┼	+	\vdash				\rightarrow	\rightarrow	\rightarrow	+		+	+
Fire-fighting water		1																	╈		\square				\neg	+	\neg	+			+
Solvents																															
Seawater	┥┝																								$ \rightarrow$	$ \rightarrow$	_	\downarrow			\square
Oils	-	+-	-	$\left \right $	_		-	-			_	_			-		_	-	+	-	-	-			\rightarrow	\rightarrow	\rightarrow	+	_	_	_
Organic liquids Pharmaceutical fluids		+	-	$\left - \right $	+	_	-				\dashv	+	┦		-	\vdash								\vdash	+	+	+	+	_	+	+
Polymerising liquids		+			\dashv						\dashv	+	+		╞						-				+	+	+	+	+	+	+
Rainwater / stormwater																										$ \uparrow $	_	\uparrow			
Cleaning agents		Γ																													
Raw sludge		_					_				\parallel	_			L	Ц			_	_	_	Ц			\downarrow	\downarrow	\downarrow	\downarrow		_	\perp
Lubricants		-	-	$\left - \right $	-		_	-			-+				-	\square			-	-	-	\square			\dashv	+	\rightarrow	+	_	_	+
Grey water Swimming pool water		+	-	$\left - \right $	-	_	-	-			\dashv	+	+		\vdash	$\left - \right $			+	-	\vdash	$\left - \right $			+	+	\dashv	+	_	+	+
Brine		+	-		\dashv	\neg	-				\dashv	+	+	-		\vdash			+	-	\vdash			\vdash	+	+	+	+	\neg	+	+
Feed water																															
Dipping paints																															
Drinking water													•																		\perp
				1 1		1					1															- I.	L L				
Thermal oil Hot water					\downarrow								-		-			-	+	_	-				\rightarrow	\downarrow	-	+	_	-	_

Waste water without faces: Yester water
Maste water with faces Mastewater with faces Mastewater with faces Mastewater
Waste water without facess 9
Waste water without facess 9
Waste water with faces y
Waste water with faces y
Waste water with faces y
Waste water with faces y
Waste water with faces y
Waste water with faces y
Waste water without faces Aggressive liquids Imorganic liquids
Waste water without faces Aggressive liquids B<
Aggressive liquids Image: service water I
Image: Control of the original original original original original original original original o
Image: Control of the original original original original original original original original o
Image: Control of the original original original original original original original original o
Image: Control of the original original original original original original original original o
Solids (ore, sand, gravel, ash) 0 Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas-turbine fuels Filtered water Filtered water Harmful liquids Cast liquids <td< td=""></td<>
Solids (ore, sand, gravel, ash) 0 Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas-turbine fuels Filtered water Filtered water Harmful liquids Cast liquids <td< td=""></td<>
Solids (ore, sand, gravel, ash) 0 Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas-turbine fuels Filtered water Filtered water Harmful liquids Cast liquids <td< td=""></td<>
Solids (ore, sand, gravel, ash) 0 Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas-turbine fuels Filtered water Filtered water Harmful liquids Cast liquids <td< td=""></td<>
Solids (ore, sand, gravel, ash) 0 Flammable liquids River, lake and groundwater Liquefied gas Food and beverage production Gas-containing liquids Gas-turbine fuels Filtered water Filtered water Harmful liquids Cast liquids <td< td=""></td<>
River, lake and groundwater 5 1
River, lake and groundwater 5 1
Liquefied gas Food and beverage production Gas-containing liquids Gas turbine fuels Filtered water Geothermal water Harmful liquids Toxic liquids Harmful liquids H
Gas-containing liquids Image: Constaining literating literating literating liquids Image: Const
Gas turbine fuels Image: Construction of the loss of the
Filtered water Geothermal water G
Geothermal water Image: Constraint of the constraint of
Harmful liquids Image: Constraint of the constraint of t
Toxic liquids I <
High-temperature hot water I
Heating water
Highly aggressive liquids
Industrial service water B B B B B B B B B B
Condensate
Corrosive liquids
Valuable liquids
Fuels
Coolants Image: Coolants </td
Cooling lubricant
Cooling water a black and a bl
Volatile liquids
Fire-fighting water Image: Second s
Solvents Solvents
Seawater Image: Seawater </td
Oils III III III III III III III III III I
Organic liquids
Pharmaceutical fluids
Polymerising liquids
Rainwater / stormwater
Cleaning agents
Raw sludge
Lubricants
Grey water
Swimming pool water
Brine
Feed water
Dipping paints
Drinking water
Thermal oil I I I I I I I I I I I I I I I I I I I
Hot water
Wash water

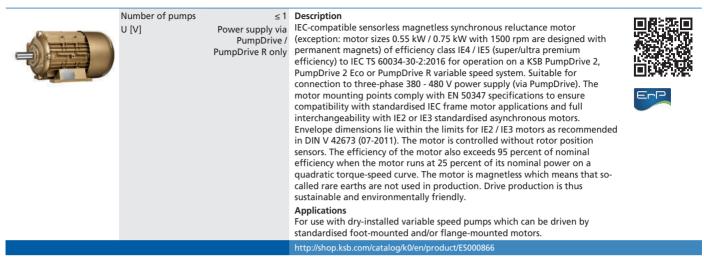
	Calio-Therm S NC/NCV	Calio-Therm NC		Calio-Therm S	Calio S	Calio	Calio Z		Etaline L	Etaline DL	Etaline	Etaline Z	Etaline-R	ILN	ILNC	Megaline	7 4 a a a a a a a a a a a a a a a a a a	Etanorm Etanorm_P	Etabloc	Etachrom B	Etachrom L	Etanorm V	Meganorm	Megabloc									
Aquaculture Spray irrigation	eed		eed		eed	-	-	sdwnd		+	_		+			_	sdund					-	-	-		\vdash	_	-	-	$\left - \right $	\rightarrow	\rightarrow	
Mining	Drinking water circulators, fixed speed		variable speed	_	variable speed	+	-	ind a		+	+	+	+	-							1	┢	┢	┢	-	┢	-	\vdash		\vdash	+	+	
General irrigation	fixe		riabl					In-line									bie																_
Chemical industry	tors,		s, va	_	s, va	_			_	\downarrow		\rightarrow		_	_	_	standardised / close-coupled			-						╞				\square	\rightarrow	$ \rightarrow$	
Dock facilities Drainage	cula		circulators,		Circulators,	+	<u> </u>		_	+	+	+	+					_	+	+	+	-			-	┝		-	-	$\left - \right $	\rightarrow	\neg	
Pressure boosting	er cir		ircul	-		+	-			+	+	+	+	\neg					+	┼	1		-	-		┢		-			+	\neg	
Sludge thickening	vate		ter c	'																													
Disposal	ing		water			-	_		_	\downarrow		\rightarrow	\downarrow	_	_	_					_	_	_	_	_	\vdash				\square	\rightarrow	$ \rightarrow$	
Dewatering Descaling units	rink		Drinking v	_	-	-	-		_	+	-	-	-			_ 3							\vdash	-	-	+	-	-	-	\vdash	-	\dashv	
District heating			Drin														Ī			+			\square			1					+	-	
Solids transport																														\square			
Fire-fighting systems Geothermal energy					_	-			_	+	_	+	+							I	-	-			-	\vdash		-	-	\square	\rightarrow	\neg	
Drawdown of groundwater levels			-			+	-		-	+	+	+	+	-	_		ŀ		-	┼	+	-	┢	-	-	┢	-	-	-	\vdash	+	\dashv	—
Maintenance of groundwater levels								1 1																									
Domestic water supply			-	•		_	_		_						I				_	_						\vdash				\square	$ \rightarrow$	$ \rightarrow$	
Flood control / coast protection (stormwater) Homogenisation			-		-	-	-		_	+	+	+	+	_	_	-	┢		+	+	-	-	+	-		\vdash	-	-	-	\vdash	\rightarrow	\dashv	
Industrial recirculation systems																						+	┢	┢	-	┢	-	-	-	\vdash	+	+	
Nuclear power stations																																	_
Boiler feed applications																										\vdash				\square	\square	\square	
Boiler recirculation Waste water treatment plants			-	•			-		_	+	_	_	+			-							\vdash	-		┝	-	-		\vdash	\rightarrow	\rightarrow	
Air-conditioning systems			-														ľ			_	_	-				+					+	+	
Condensate transport																				_													
Cooling circuits				•													4					_				\vdash				\square	\rightarrow	$ \rightarrow$	
Paint shops Food and beverage industry			-			-	-																•		-	┝	-	-	-	$\left - \right $	+	\rightarrow	
Seawater desalination / reverse osmosis			-						_	-	-	-	-	-						_	1	F				1					-	+	
Mixing																														\Box			_
Offshore platforms Paper and pulp industry					-	-			_	+		+	+			_	-		_	+	-	-	-	-	-	╞			-	\square	\rightarrow	\neg	
Paper and purp industry Petrochemical industry			-			+	-			+	+	+	+	-			┝		+	+	-		\vdash	-	-	+		-	-	$\left - \right $	+	+	
Pharmaceutical industry								11												T													_
Pipelines and tank farms																														\square	\square		
Refineries Flue gas desulphurisation		$\left - \right $		_	-	-	-		_	+	+	_	+	\rightarrow	_	_	-	_	+	+	-	-	-	-	-	+	-	-	-	\vdash	\dashv	\dashv	
Rainwater harvesting		\vdash				+	-		+	+	+	+	+	+			-	-	+	+	+	-			-	+		-	-	\vdash	+	+	
Cleaning of stormwater tanks / storage sewers																																	_
Recirculation				_		-													_	_	_	-				\vdash			_	\square	\dashv	$ \rightarrow$	
Dredging Shipbuilding		\vdash		_		+	-		-+	+	+	+	+			-	-	-	+	+	+	-	\vdash	-		┢	-	-	-	\vdash	\rightarrow	\dashv	
Sludge disposal						-	-			+	+	+	+	-	-			-	+	+	+	-	\vdash	-	-	\vdash		-	-		+	╡	
Sludge processing																															⊐		
Snow-making systems				_		-	_									_		_	_	-	_	-	-			\vdash		_	_	\square	\dashv	\downarrow	
Heavy oil and coal upgrading Swimming pools		\vdash		_	-	+	-		-+	+	+	+	+									-	\vdash	-	-	\vdash	-	-	-	\vdash	+	\dashv	
Solar thermal energy systems																																	
Fountains		\square																	\square	\square						F				Г	\downarrow		
Keeping in suspension Thermal oil circulation		$\left - \right $		_	-	-	-		-	+	+	_	+	+	_	_	-	_	+	+	-	-	-	-	╞	┢	-	-	-	\vdash	\dashv	\neg	
Draining of pits, shafts, etc.		$\left \right $				+	-		-	+	+	+	+				-	-	+	+	+	+	\vdash	-	\vdash	+	-	-	-	\vdash	+	+	
Process engineering																																	_
Heat recovery systems						_					_	-	_	_												\vdash				\square	\downarrow	-	
Hot-water heating systems Washing plants		⊢		-		-					-						-					-			-	\vdash	-	-	-	\mid	+	\dashv	
Washing plants Water treatment																	Ī						_								_		
Water extraction																										\square					\square		
Water supply						-	-										-									\vdash	-	-	-	\vdash	\dashv	\dashv	
Sugar industry																																	

plications																														
																											z			
					≻								-														Hya-Rain / Hya-Rain N			
					Etanorm SYT / RSY						85	Magnochem-Bloc	Etaseco / Etaseco-l														a-R			
					È	н.				1	9 E E	Ē	tasi	۵.			멷				CINCN			Ñ			Ť	8		
					n s,	γž	5	¥		4	che Che	che	/Ε	22			RP				đ	,		Š			ì	п		
					orn	Etabloc SYT	2	MegaCPK	z	MadaonabeM	Magnochem 685	ĕ	eco	Etaseco RVP		RPH-LF	RPHb / RPHd	Ņ		~ i		P	iia.	RWCP / RWCN	٣		Rai	Hya-Rain Eco		
	HPK-L	HPH	НРК		tan	tab tab	ġ	leg	CPKN	204	nay Nag	/ag	tas	tas	Hda	Ē	H	RPH-V	E	CHTR			Estigia	Ň	WKTR		lya-	lya-		
A		. <u> </u>			ш	<u> </u>	_				< <		ш 			- 62	~	~	0		_		-		-			<u>т</u>		
Aquaculture	nps	_		nps	\vdash			<u>e</u>	\vdash	nps	_	-			sdu	_			\rightarrow	\rightarrow	_					sma			\vdash	
Spray irrigation	sdund	_	-	sdwnd	\vdash		_	sdund	\vdash	Seal-less pumps	_	_			sdund	_			_	\rightarrow	_	_	+	┢		Rainwater harvesting systems			\vdash	
Mining	ter	_	\vdash	oi	\vdash				\vdash	ess	_		$\left \right $		ess	_			\rightarrow	\dashv		_	+	⊢		s Gu			\vdash	
General irrigation Chemical industry	Hot water	+	\vdash	Hot water / thermal	\vdash	\rightarrow				eal-l					Process											estir	▣		\vdash	
Dock facilities	- 후	+-	\vdash	Jer	\vdash	_	- 4	5 -		Se -				-					-				· =	┼═		arve	\vdash	$\left - \right $	\vdash	
Dick lacinge		-	+	1. 1.	\vdash				$ \rightarrow $		+	-				+-			\rightarrow	+				-		r þ	\vdash	$\left - \right $	\vdash	
Pressure boosting		-	\vdash	ater	\vdash		Ctandardicod		$\left - \right $		+	-	$\left \right $						-+		_			┼╴	+	ate	\vdash	\vdash	\vdash	
Sludge thickening	-	-	\vdash	- Š	\vdash						_	-		_					-		-	-		+		in∛			\vdash	
Disposal	-	-	+	For	\vdash		- ÷		\vdash		+	-	$\left \right $			+-			\rightarrow	+	-	+	+			Ra	\vdash	$\left - \right $	\vdash	
		-	\vdash		\vdash		-		$\left - \right $		+	-	$\left \right $			+-				+	-						\vdash	\vdash	\vdash	
Dewatering Descaling units		+	\vdash		\vdash	+	-		\vdash		+-	-	$\left - \right $			+-	+	\vdash		+			`┼■	╞	+		\vdash	$\left - \right $	\vdash	_
Descaling units District heating		-			\vdash	+	-											$\left - \right $	+	+		+	+	+	+		\vdash	$\left - \right $	\vdash	
Solids transport			╞╴		\vdash	+	-		┝┻┥							+-	+	$\left - \right $	-+	+		+	+	\vdash	+		\vdash	$\left - \right $	\vdash	
Fire-fighting systems		+	\vdash		\vdash	+	-						$\left - \right $			+-	+	\vdash	\rightarrow	+		+	+	\vdash	+		\vdash	$\left - \right $	\vdash	_
Geothermal energy					\vdash	+	-			-			$\left - \right $			+-	+	$\left - \right $	\rightarrow	+		+	+	+	+		\vdash	$\left - \right $	\vdash	
Drawdown of groundwater levels			┼┻		\vdash	+	-	-	$\left - \right $			-	$\left - \right $			+-	+	\vdash	\rightarrow	+		+	+	┢	+		\vdash	$\left - \right $	\vdash	_
Maintenance of groundwater levels		-	\vdash		\vdash	+	-		\vdash		-	-	$\left - \right $				+	\vdash	\rightarrow	+					+		\vdash	$\left - \right $	\vdash	
Domestic water supply		-	\vdash	-	\vdash	_	-		\vdash			+	$\left \right $				+		\rightarrow	+			· •	+-	+				\vdash	_
Flood control / coast protection (stormwater)		-	\vdash	-	\vdash		-				_			_					-	+	-	-		+			-		\vdash	
Homogenisation	-	-	+	-	\vdash		-	-	$\left - \right $		-	-							-+	+	-	+	+	+	+		\vdash	$\left - \right $	\vdash	
Industrial recirculation systems							-									-			\rightarrow	+								$\left - \right $	\vdash	_
Nuclear power stations				-	\mapsto		_	-	┝┻┥			_		-		_	H		\rightarrow				·	╞╴				$\left - \right $	\vdash	_
Boiler feed applications				-	\vdash		-	-	$ \rightarrow $				$\left \right $		H							+	+	+	+		\vdash	$\left - \right $	\vdash	
Boiler recirculation		_			\vdash		-		\vdash		-	-			⊢				\rightarrow			+	+-	+	+			$\left - \right $	\vdash	
Waste water treatment plants		-	╞═┤		\vdash	_	-		\vdash		+	+	$\left - \right $	_		+-	+		\rightarrow	+			+-		+	·	\vdash		\vdash	-
Air-conditioning systems		-	\vdash	-	\vdash		-		\vdash		+	+				+-			\rightarrow	+	1	-	+	+-	+		\vdash	\vdash	\vdash	
Condensate transport					\vdash		-		\vdash		+	+							\rightarrow	+							\vdash	$\left - \right $	\vdash	
Cooling circuits			_	-	\vdash		-								H		-		\neg	-				+-	+-	•			\vdash	-
Paint shops	┤┟╴╴			-	\vdash		-	-	H							+-			\rightarrow	+							\vdash	$\left \right $	\vdash	
Food and beverage industry		+	\vdash				-							-		+-	-			+		_					\vdash			_
Seawater desalination / reverse osmosis		+	\vdash		\mapsto											+-			-		_	+		╞	+		\vdash		\rightarrow	_
Mixing		+	+		\vdash		-	F	H			+-				+			\rightarrow	-+-	-	+	+-	+-	+		\vdash	\vdash	<u> </u>	
Offshore platforms		+-	\vdash		\vdash		-		\vdash		+	+		_					\neg				+-	┼─	+		\vdash		\vdash	-
Paper and pulp industry		+	\vdash		\vdash		-				+	+	$\left \right $		F	+-	-		\rightarrow	-+					+		\vdash		\rightarrow	-
Petrochemical industry		+	\vdash		\vdash		-																	-			\vdash		$ \rightarrow$	
Pharmaceutical industry		-	\vdash		\vdash		-								F	+-	-		-			+		+=	+-				\vdash	_
Pipelines and tank farms		+	+				-			l															+		\vdash		\vdash	_
Refineries		+	\vdash				-					_										_					\vdash		\vdash	_
Flue gas desulphurisation		+	\vdash		\vdash	+	-		Ħ		+	+-	\vdash			+						+	+-	\vdash	+-				\vdash	-
Rainwater harvesting		+	+		\vdash	+	-		\vdash		+	+				+		\vdash			_				+				\vdash	-
Cleaning of stormwater tanks / storage sewers		+	\vdash		\vdash	\neg	-		\vdash		+	+	-			+			\rightarrow	-	1	1	+-	╞	+		Ē	H	$ \rightarrow$	-
Recirculation		+	\vdash		\vdash	\neg	-		\vdash		+	+	-			+		\vdash		+	+	+	+	\vdash	+				$ \rightarrow$	-
Dredging		1	+		\vdash	\neg	-		\vdash		+	+				+			-+	+	+	+	+	\vdash	+				\vdash	-
Shipbuilding		1	\square		\vdash	+	-		\square		+					+		\vdash	\rightarrow	+	+				+				$ \dashv$	-
Sludge disposal		1	\square		\vdash				\vdash		+	1				+			+	+	+	+	+		_				\neg	-
Sludge processing		1	\square		\vdash	+	-		H		+	1				+		\square	+	+	+	+	+						\square	-
Snow-making systems		1	\square		\vdash	+	-		\square		+					+		\vdash	\rightarrow	+		+	+	f	1				$ \dashv$	-
Heavy oil and coal upgrading		1	\square			\neg				I									\rightarrow				1	T	\top				\neg	
Swimming pools							-		\square										\neg	+		1	1	\top	1				\square	-
Solar thermal energy systems			\square						\square										\neg	\uparrow				\square	1				\square	-
Fountains		1	\square						\square		1								\neg	\uparrow		+	1	\square	1				\square	-
Keeping in suspension		1							\square										\neg	\neg			1	T					\square	_
Thermal oil circulation									\square	ſ										1										_
Draining of pits, shafts, etc.									\square																					_
Process engineering										I																				-
Heat recovery systems									\square																					_
Hot-water heating systems										ſ																				
Washing plants																														_
										ſ																				
Water treatment		1					1					1																		_
Water treatment Water extraction			L 1														_	<u> </u>		_			<u></u>	1-	_	1			<u> </u>	
					H															士					_					_

								٩																						
								KSB Delta Solo/Basic Compact MVP																						
								act																						
							Ą	ğ	₽.	٩.																				
							KSB Delta Macro F/VC/SVP	ē	KSB Delta Basic MVP/SVP	KSB Delta Primo F/VC/SVP	KSB Delta Solo MVP/SVP				ť	t					~	Surpresschrom SIC.2 SVP								
							ž	ü.	<u> </u>	5	Ä				, Hya-Solo D FL Compact	Hya-Duo D FL Compact				2	Surpresschrom SIC.2 V	2								
							Ē	Bas	Ξ	Ē	≩				Б	E O			0	Surpresschrom SIC.2	S	S	ш							
		-	0				ž	0	Ë.	Ĕ	0				Ľ	Ŭ			ŭ	Ε	E	E	SEI							
		Pro	<u>P</u>				ž	S	Ba	F.	ŝ,	h ک	ίς μ		E E	E		€	€	Ľ.	Lo Lo	Ľ.	en							
	9	ģ	ģ				lta	lta	lta	lta	<u>a</u>	0			9	ē	Ξž	r s	Ś	sch	sch	sch	S F							
	Multi Eco	Multi Eco-Pro	Multi Eco-Top	Ixo-Pro	Filtra N		De	De	De	Ď	De	Hya-Solo D	Hya-solo Usv	Hya-Duo D FL	Sol	Du	Hyamat K Hyamat V	Hyamat SVP	Hyamat SVP ECO	res	res	res	Surpress Feu SFE							
	Ē	Ē	Multi	5 5	ltre		SB	SB	SB	8	8	- A	Ż	Ya- Ya-	γa,	ya-	yar	yaı Yal	yar	dun	d n	dun	d n							
	Σ	≥	$\geq \frac{1}{2}$	× ×	Ξ		Ŷ	Ŷ	Y	2	¥ :	I :	I J	τŢ	Ť	Ť	ΪÌ	Ξ	Ť	Š	Š	Š	N N							
Aquaculture	SC					S																								
Spray irrigation	ξ Π					ten																							\square	
Mining	p -					Pressure booster systems								+					1					1			-	+		
General irrigation	00 •					ter								+										+				+		_
Chemical industry	d 6					SOC	-	-	-	-				+-		$\left \right $			-	-	-	-		+	$\left \right $			+		
Dock facilities			_			ğ	_				+	_					_									-+		+'	\vdash	
	<u> </u>	$\left \right $		_		nre	_			\rightarrow	-+	_		_		\vdash		_							$\left \right $	\rightarrow	_	+'	\vdash	
Drainage	SV	$\left \right $		_		ress	_		_		_	_	_	_	_	\vdash	_	_						_	$\left \right $	\rightarrow	_		\vdash	
Pressure boosting	Ľ.					ā																							\square	
Sludge thickening	'n																												\square	
Disposal	tro																													_
Dewatering	uo	LT						LĪ	_T			_[LT									LT				LT	_
Descaling units	ico	\square			\square									1											\square					
 District heating	nat				\square					\uparrow								1	1					1		1			\square	
Solids transport	ton	+		+	\square			\vdash	\neg	+	+	+	+	+	+	+		+	1					+	+	+	-	+		
Fire-fighting systems	au	\vdash	_	+	\vdash			\vdash	\rightarrow	+	+	+	╈					+-	-	<u> </u>	\square			+-	\vdash	+	+	+	\vdash	—
	ith	$\left - \right $	_	_	$\left - \right $		_	\vdash		+	+	-+		┛┤┛		┝═┼	+		-	<u> </u>	\vdash			+	$\left - \right $	\rightarrow	_	+	\vdash	
Geothermal energy	Domestic water supply systems with automatic control unit / swimming pool pumps	$\left \right $		_	\vdash		_			_	_	-	_	_	-	$\left \right $	_		-					-	$\left \right $	_	_	+	\vdash	
Drawdown of groundwater levels	em	\square			\square		_	\square		\rightarrow		_	_	_	-			_	-	<u> </u>				-	\square	-+		+	\square	
Maintenance of groundwater levels	yst	\square			\square											\square			1						\square				\square	
Domestic water supply	_ S																													
Flood control / coast protection (stormwater)	dd																													
Homogenisation	r su																												\square	
Industrial recirculation systems	ate													1		\vdash		1	1					1				1		_
Nuclear power stations	Ň													+	-				1					+				+		_
Boiler feed applications	stic	+		+-									+	+-		$\left \right $		+	-	<u> </u>				+	+			+	$\left - \right $	_
Boiler recirculation	me –		_				_				+	_				$\left \right $									+	-+	_	+	$\left \right $	_
	å –		_	_		-	_				+	_	_				_	_						-	$\left \right $	_	_	+	\vdash	_
Waste water treatment plants		\vdash		_			_				_	_	_	_		\vdash		_							$ \rightarrow $		_		\vdash	
Air-conditioning systems				_			_								_	\square			_										\square	
Condensate transport																														
Cooling circuits																														
Paint shops																														
Food and beverage industry																														
Seawater desalination / reverse osmosis																								1						_
Mixing				-										+	-			-	1					1			\neg	+		_
Offshore platforms				-										+		\vdash			1	<u> </u>				-				+		
Paper and pulp industry		+	_	+		-	-			-		-				\vdash	_	_	+	<u> </u>					+	\rightarrow		+	\vdash	_
		+		_			_				-+	_		_		$\left \right $		_							$\left \right $		_	+'	\vdash	
Petrochemical industry				_			_				-+							_	_					_			_			
Pharmaceutical industry																\square														_
Pipelines and tank farms																													\square	
Refineries																														
Flue gas desulphurisation																		T												
Rainwater harvesting																								1			1		\square	_
Cleaning of stormwater tanks / storage sewers		\uparrow		1	\square					+	\neg				1			1	1	i				1		\uparrow	1	+	\vdash	_
Recirculation		+		1	\square				\neg	+	-	+	+	1	1	\vdash		+	1	<u> </u>				+	\vdash	+		+		
Dredging		+		+	\vdash		_	\vdash	+	+	+	+	+	+	+			+	+	-				+	+	+	+	+	\vdash	—
		+	_	+-	$\left - \right $		_	\vdash	-+	+	+	_	+		+	+	_	+-	-		\vdash			+	+	+	-+	+'	$\mid \mid$	—
Shipbuilding		+		+-	\vdash		_	\vdash		+	_	_	+		-	\vdash	_	+		<u> </u>	\square			+	+	\rightarrow	_	+	\vdash	
Sludge disposal		$\left \right $		_	\square				_	+	_	_	_	_	-	\vdash	_			<u> </u>				-	$\left \right $	\rightarrow	_	+'	$\mid \mid \mid$	
Sludge processing				_				\square							_			_	_					_					\square	
Snow-making systems																													\square	
Heavy oil and coal upgrading																ļ														
Swimming pools																LT													LT	
Solar thermal energy systems										Ì																Ì				
Fountains					\square				\neg	+	+		1	1	1			1	1					1		\uparrow		+	\square	—
Keeping in suspension		+		+	\vdash		-	\vdash		+	+	+	+	+	1	\vdash	+	+	1					+	\vdash	+	+	+	\vdash	—
Thermal oil circulation		+			\vdash		-	\vdash	-+	+	+	+	+	+-	+	\vdash	-	+-	-		\vdash			+-	+	+	-	+	\vdash	_
		+			\vdash		_	\vdash	-	+	+	+	+	-	-	$\left \right $		+	-	-	\square			+	$\left \right $	+	+	+	\vdash	
Draining of pits, shafts, etc.		+		_	\vdash		_		-+	+	-	_	+	+	-		_		-	<u> </u>				+	$\left \right $	+		+	\vdash	
Process engineering		\vdash		_	\square		_	\square		\rightarrow		-	_		-	\vdash		_	-					-	$\left \right $	\rightarrow		+'	\square	
Heat recovery systems		\square		_	\square			\square					_	_	_	\vdash			-	<u> </u>				-	\square			+	\square	
Hot-water heating systems																														
Washing plants																														
Water treatment										T	T	T	T													T				
Water extraction																											1		\square	_
														1	1									1	$\uparrow \uparrow$	\neg	1			_
Sugar industry		+-+		+-	\vdash		-	-	-+	_			-	+	+			+-	+-	<u> </u>	-			+	+	+	+	+		—
																			1								1			

Applications

		Ama-Drainer N	Ama-Drainer 4 / 5 Ama-Drainer 80, 100	Ama-Porter F / S	Rotex	MK / MKY		Amaclean	Ama-Drainer-Box Mini	Ama-Drainer-Box	Evamatic-Box N	mini-Compacta	Compacta	CK 800 Pump Station	Amo Portor CV Primo Station	Ата-Рогсег СК Ритр этацол SRP	SRL	SRS	A monto	Amarex Amarex N	Amarex KRT								
Aquaculture	sd						suo												s										
Spray irrigation	sdwnd	\rightarrow	_	_	-	_	tatic	_			\rightarrow		_	_		_	$\left \right $		Submersible motor pumps	_	_		_	_		_	_	\vdash	_
Mining General irrigation	ater	+	_	+-	+	\vdash	s du	-			-+	_	_		_	_	+	-	otor				_	-		_		\vdash	_
Chemical industry	waste water	+		+	+	┢	und				\rightarrow		-	+	-		+		Ĕ	÷				+			+-		
Dock facilities	vasti				1	\square	age											-											
Drainage	_						back												mer									\square	
Pressure boosting	u u	\rightarrow		_	-	_	ts / p	L			\rightarrow	_		_		_			an –	_			_	_			_	-	_
Sludge thickeningDisposal	age pumps						Lifting units / package pump stations																		$\left - \right $		+-	\vdash	_
Dewatering	aina			_			fting				T						+						+	+			+		
Descaling units	Drain						15																						
District heating		_		+	\downarrow				\square	\square							\square				\square		+	\perp	\square			\square	
Solids transport Fire-fighting systems	-	-		+	-	\vdash		-			-+	_	+	+	_	_	$\left \right $	_	-	-			_	-	$\left \right $		-	\vdash	_
Geothermal energy		+	+	+	+	\vdash		-			+	+	+	+	+	+	+			+	\square		+	+	$\left \right $		+		
Drawdown of groundwater levels																													
Maintenance of groundwater levels					_			_			\rightarrow			_		_							_				_		
Domestic water supply Flood control / coast protection (stormwater)	-	+		-	+	-		-			-+	_	_	_	_	_	+		-	+			_	_				\vdash	_
How control / coast protection (stormwater)		\neg		+	+	┢					\rightarrow			┼		+	+			+	-		+	+			+-		
Industrial recirculation systems																													
Nuclear power stations				_	-	-		<u> </u>			\rightarrow			_		_				_				_			_	-	_
Boiler feed applications Boiler recirculation		+		-	+	\vdash			-		\rightarrow	_	-		-	_	+	-		+-	-			-			-	\vdash	_
Waste water treatment plants				1	+	\vdash							+			+							-	1			-		
Air-conditioning systems																													
Condensate transport Cooling circuits		\dashv		_				-				_	_	_	_	_	$\left \right $	_	-	_				_			_	\vdash	
Paint shops	-	+		+	+	\vdash					\rightarrow		+	+	+	+	+			+			+	+-			+	$\left \right $	
Food and beverage industry																													
Seawater desalination / reverse osmosis					_									_		_				_							_		
Mixing Offshore platforms		+	_	-	-	\vdash		-			_	_	+	+	_	_	+		-	_			_	_	$\left \right $	_	_	\vdash	_
Paper and pulp industry		+				\vdash					\rightarrow		+	+		+	+							-			+		
Petrochemical industry																													
Pharmaceutical industry			_	_	_	_		_			_			_		_				_			_	_			_	$\left - \right $	_
Pipelines and tank farms Refineries		+		-	+	-		-				_	-	+	-	_	+		-	+	-			-			-	\vdash	
Flue gas desulphurisation				1	1	\square								+						+							+-		
Rainwater harvesting																												\square	
Cleaning of stormwater tanks / storage sewers Recirculation		+		-	-	-						_	_	_	_	_		_					_	-			-	\vdash	
Dredging		\neg		+	+	┢					\rightarrow			┼		+	+			+	-		+	+			+-		
Shipbuilding																													
Sludge disposal										\square																			
Sludge processing Snow-making systems		-	_	+	-	-		-	-	$\left - \right $	-+	_	+	+	_	_	$\left \right $	_					+		$\left - \right $	_	+-	\vdash	_
Heavy oil and coal upgrading		+	+	+	+	\vdash					\dashv	+	+	+	+	+	+	-		+			+	+	+	+	+	\vdash	
Swimming pools																													
Solar thermal energy systems		_	_[1	+					\square	-		-				$\mid \downarrow \downarrow$				\square	$\dashv \downarrow$			\square			$\mid \downarrow \downarrow$	
Fountains Keeping in suspension		+		+	+	\vdash		-		$\left - \right $	+	+	+	+	+	+	+			+	\vdash	+	+	+-	$\left \right $	_	+-	\vdash	_
Thermal oil circulation			+	+	+						+		+	+	+	+	+			+			+	+	$\left \right $	+	+		
Draining of pits, shafts, etc.																													
Process engineering			_	+	-	-		-		$\left - \right $	_	_	-	-	_	_	$\left \right $			_			_	_	$\left \right $		-	\vdash	_
Heat recovery systems Hot-water heating systems		+	+	+	+	-		-		$\left - \right $	-+	+	+	+	+	+	+	_		+	\vdash		+	+	$\left \right $		+	\vdash	_
Washing plants						Ĺ																							
Water treatment	ł			_																								\square	
Water extraction						-		-			-+	_	-	+	_	_	$\left \right $						_	_			_	\vdash	
Water supply Sugar industry		+	-	+	+-	\vdash					+	+	+	+	-		+	_	ŀ				+	+	+	-+	+	\vdash	_
						1											1											<u> </u>	


	Amacan K		Amacan S		Amamix	Amaline		Sewatec	Sewatec SPN	Sewabloc	KWP	KWP-Bloc		WBC	LSA-S	LCC-R	TBC	LCV	FGD	UHN	MDX	ZW	HVF		Etaprime L	Etaprime B	EZ B/L	AU	AU Monobloc	
Aquaculture	es			units			fluids						nps											sdu	\square		\square	\square		\square
Spray irrigation Mining	discharge tubes	-		in 6	+	_	n flu	-		_			Slurry pumps											Self-priming pumps			+	+	_	+
General irrigation	arg			anir	+		ade						urry				-					-		ning	+	+	+		+	+
Chemical industry	disch			agitators / tank cleaning			solids-laden						S											-prin						
Dock facilities	s in			tan			or so	-				_	-		_	_					_			Self	_	_	\downarrow	_	_	_
Drainage Pressure boosting	Submersible pumps in	+	-	ors /	+	_	Pumps for					-	-	_	+	+-	\vdash		+	_	+	-		-						+
Sludge thickening	le pi	+		gitat		+	nm	_						+	+	+-	┢			_		-			+	+	-	+	+	+
Disposal	ersib			\sim																										
Dewatering	pme			Mixers																										
Descaling units		-		Ξ		_	_	_				-	-						!		-			-	\dashv	\rightarrow	\rightarrow	\rightarrow	_	_
District heating Solids transport			-	-	+	_	-						-											-	\dashv	+	+	+	_	+
Geothermal energy		-	-		+				\vdash			-				-							\vdash		+	+	+	+	+	+
Fire-fighting systems																											_			
Drawdown of groundwater levels																														
Maintenance of groundwater levels		-				_		_					-	_	_	_	_		_	_	_	_		-	_	_	\rightarrow	_	_	_
Domestic water supply Flood control / coast protection (stormwater)			-		+	_	-					_	-	-+	+	+-	+		-	_	-	-		-			+			+
Homogenisation		+				+							-	+	+	+	+		+		+-	+			+	+	+	+		+
Industrial recirculation systems					_																									
Nuclear power stations																														
Boiler feed applications		_				_						_		_	_	_	_		_	_	_	_		-	\rightarrow	-		\rightarrow	_	+
Boiler recirculation Waste water treatment plants			-				-						-		_	_	-		_			-		-			-			+
Air-conditioning systems		-	-					-		-	-	-	-		+	+	-		+	-	-	-					+	-	-	+
Condensate transport															1	1									7	_	+	+		+
Cooling circuits																														
Paint shops		_				_		_						_	_	_	_		_	_	_	_		-	_	-		_	_	+
Food and beverage industry Seawater desalination / reverse osmosis				-	+	_	-				-	-							_	_	_	-					+	-		+
Mixing		+-	-	-							-		-	+	+	+-	+		+		+	+			+	+	+	+	+	+
Offshore platforms																									1	\neg	╡	\neg		+
Paper and pulp industry																														
Petrochemical industry		-				_	_					_	-	_	_	_			_	_	_	-		-	_	\rightarrow	\rightarrow	\rightarrow	_	_
Pharmaceutical industry Pipelines and tank farms		-	-	-	+	_						_				_	-		_	_	_	-				\dashv	+	+	_	+
Refineries		-	-		+	-							-		+	+	-		+	-	-	-			+	+	+	+	-	+
Flue gas desulphurisation		1			╈										+	+	1					1			╈	+	+	+	+	+
Rainwater harvesting																														
Cleaning of stormwater tanks / storage sewers								_				_					_							-	\downarrow	\downarrow	\downarrow	$ \rightarrow$		_
Recirculation Dredging		-		-	+		-			_		_	-						_		-	-		-	+	\dashv	+	+	_	+
Shipbuilding		-	-		+	-											-					+			+	+	∎⊤			+
Sludge disposal																														
Sludge processing																														
Snow-making systems		_									_	_	-		_	_						-			_	_	\rightarrow	\rightarrow	_	_
Heavy oil and coal upgrading Swimming pools		-	-	-	_	_	-	-				-	-	_	_	_	-			_	-	-		-			+		_	+
Solar thermal energy systems		-	-		╈	-						-			+	+	-		+	-	-	+	-		┭	-	+	-	-	+
Fountains					1																				+	+	+	\uparrow		1
Keeping in suspension									\square																					
Thermal oil circulation		-				_		-			\square					-	-				_	-	\square		\dashv	\dashv	\downarrow	\downarrow	_	_
Draining of pits, shafts, etc. Process engineering		-	-	-	+	_		-	$\left \right $				-	+	+	+	-	$\left - \right $	+	+	+	-	$\left - \right $		\dashv	\dashv	+	+	+	+
Heat recovery systems		-	-		+	-		-			-	-		+	+	+	-		+	+	+	-	$\left - \right $		+	+	+	+	-	+
Hot-water heating systems																									_		_	_		1
Washing plants																									\square			\square		
Water treatment						_		-							_		-				_	-	\square		\downarrow	\dashv		_	_	_
Water extraction Water supply					+	_	-	-	$\left - \right $		\square	_		-	+	-	-	$\left - \right $	+	_	+	-	\vdash				_		_	+
						1									1		1	I			1	1	1		-			-		_

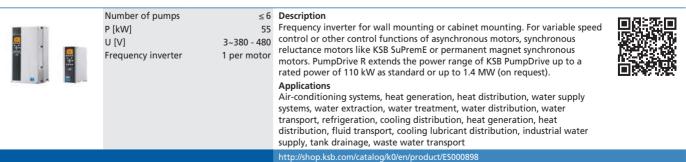
Americken	11BAchrom 100 CC		UPA 150 C	UPA 200, 200B. 250C	UPA 300, 350	UPA 400-850	UPA D		B Pump	Comeo	Movitec H(S)	Movitec	Movitec VCI	Multitec		Omega	RDLO	KDLP	Vitachrom	Vitacast / Vitacast Bloc	Vitaprime	Vitastage	Vitalobe			HGB / HGC / HGD	HGI	HGM	YNK		WKTB	
Aquaculture Spray irrigation	Submersible borehole pumps							Vertical turbine pumps		High-pressure pumps					Axially split pumps	+	-			+	-	-	-	islands		-	\vdash		-	+	+	+
Mining	e pu		_					e pu		e br		F			t pu	+		- 7		┢				l isla							╈	+
General irrigation	loha							rbin							spli									iona								
Chemical industry	bore	_	_	_	_			l tu		-pre					ially									/ent	_	L					_	\downarrow
Dock facilities Drainage	ble	+	_	-	+			rtica	-	High-					¥.					-	-	-	-	conv	_	<u> </u>	\vdash			-	+	+
Pressure boosting	lersi							Ve	-											┼╴	+	┢	-	ion		-	┝─┦			+	+	+
Sludge thickening	ndn	+-		╞	+-	-	-			F		-		_		_		2	2 -	┢	-			stat						+	╈	+
Disposal	S																		ש					ver								
Dewatering																								l od								
Descaling units				_	_				_									_		_				for					$ \rightarrow$			\downarrow
District heating		+	-	-	-	-	\square		_		_		\square					د ح	'n	-	-	-		Pumps for power station conventional	-	-	\vdash	\vdash	_	-	+	+
Solids transport Fire-fighting systems			+-			-	\square			-			\vdash							+	-	-	-	Pu		-	\vdash	\vdash		+	+	+
Geothermal energy		+	-	+-	-	-			-		+-	-		-	-	-		- 4		┼	+	┢	-			-	┝┤				+	+
Drawdown of groundwater levels																1				╞											╈	1
Maintenance of groundwater levels																		1														
Domestic water supply					-														<u>-</u>							L				_		\downarrow
Flood control / coast protection (stormwater)	-	_	_		-				_		_				-	+				_	-				-		\square			_	+	\downarrow
Homogenisation	-	+	_	-	-	-			_						-	+	_		<u> </u>	+		\vdash	-		-	-	\vdash		-		+	+
Industrial recirculation systems Nuclear power stations		+	+-	+	┼─	-						-		-	-	+	+			┢	-	┢	-				\vdash			+		+
Boiler feed applications		+	-		+										-	+				+	+								-			+
Boiler recirculation																																
Waste water treatment plants																																
Air-conditioning systems	_		_		-											-										L				\rightarrow		\downarrow
Condensate transport	-	+	_	_	-				_		_	_	_	-		-		_	-	-	-	_	-									\downarrow
Cooling circuits Paint shops	-	+		-	+				_				Π		-			-		+	-	\vdash	-		-	-	$\left - \right $		-	+	+	+
Food and beverage industry		╈			┼╴	-					Ē		-			+										-	$\left - \right $			+	╈	+
Seawater desalination / reverse osmosis		1	1												Π					╞	1										╈	+
Mixing																																
Offshore platforms												<u> </u>																				$ \downarrow$
Paper and pulp industry	-	+	_	-	_				_		-			_		_	_			-	-	-			-	-	\square		_		+	+
Petrochemical industry Pharmaceutical industry	-	+	_	+	+	-			_		-	-		-	-			-							-	-	\vdash		_	_	+	+
Pipelines and tank farms	-	+		-					_		-				-	+					-		-			-	$\left - \right $				+	+
Refineries		+	1		1						+	-								┢	+					-					+	+
Flue gas desulphurisation																																
Rainwater harvesting																																
Cleaning of stormwater tanks / storage sewers	_	_	_	_	_				_	_	_	_			-	\rightarrow		_		_					<u> </u>	<u> </u>	\square			_	_	\downarrow
Recirculation Dredging	-	+	_	-	-				_		_	_			-	+	_			+	-	-	-		-	-	\vdash		-	_	+	+
Shipbuilding	-	╈	-	+	-	-					-	-								┼	-	┢	-			-	┝┤				╈	+
Sludge disposal		╞														+				╞											╧	+
Sludge processing																																\downarrow
Sludge processing Snow-making systems			_	-	-				_						-	+	_	_		+	-	-	<u> </u>		-	_	\square		-	\rightarrow	+	\downarrow
Sludge processing Snow-making systems Heavy oil and coal upgrading		+			+	-			_		-	-			-	+	-	-		+	-	┝	-		-	┝	\vdash				+	+
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools			+			-					+				-	+				┢	-	\vdash	-			-	┝─┦			-	+	+
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems												<u> </u>											-	1								1
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools													<u> </u>							-					-		L .					
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation																_																\Box
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc.																																
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc. Process engineering																																
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems																																
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc. Process engineering																																
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems												<u> </u>					_															
Sludge processing Snow-making systems Heavy oil and coal upgrading Swimming pools Solar thermal energy systems Fountains Keeping in suspension Thermal oil circulation Draining of pits, shafts, etc. Process engineering Heat recovery systems Hot-water heating systems Washing plants																																

plications																																		
		SEZ / SEZT / PHZ / PNZ	SNW / PNW	Beveron	SPY		RER	RSR	RUV	PSR	RHD	LUV Nuclear	RHM	RVM	RHR	RVR	RVT	RPH-RO	HGM-RO	Multitec-RO		RC / RCV		EUS DU / EU		KSB SuPremE	KSB UMA-S		PumpDrive 2/PumpDrive 2 Eco	PumpDrive R		PumpMeter	KSB Guard	
Aquaculture	spu					suc													_		sdu		Sm -	_	Drives		_	sma			osis	\downarrow	\rightarrow	
Spray irrigation	islands		_		_	Pumps for nuclear power stations			_										_		Positive displacement pumps	_	Fire-fighting systems	_	Dri			Variable speed systems			diagnosis		-	_
Mining General irrigation		_	_	_	_	er st			_		_					-+		о — с	-		sut	_	S BL			-		ed s	H	_	dia			_
Chemical industry	Itio		-			MO			_		_				_	-+			-		eme		- I	_				spee	H	H	and	-		_
Dock facilities	power station conventional				-	ar p	_		_		_							<u>م</u>	-	—	olac	-	-fig			F		ole	P	-	Monitoring and	\rightarrow	-	—
Drainage	cor				-	Icle					_					+	2		+		disp	_	Fire					Irial			tori	\rightarrow		—
Pressure boosting	ion	_	-	-	-	r n													1		ive							Ś			loni			—
Sludge thickening	stat					s fo					_								1		osit	_	-				-				2	-	-	—
Disposal	ver					dm										\neg		nes			•										ŀ	+		_
Dewatering	Nod					Pu											2	5																—
Descaling units	for																	6																_
District heating	Pumps for																~																	_
Solids transport	m																												\square					_
Fire-fighting systems	"																																	_
Geothermal energy																																		_
Drawdown of groundwater levels																																-		
Maintenance of groundwater levels																															-			_
Domestic water supply					_				_								_					_												_
Flood control / coast protection (stormwater)					_												_					_	-	_			-					\rightarrow	-	_
Homogenisation					_				_								_		-			_	-	_			-					_	_	
Industrial recirculation systems		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	-	-	_			-						-		-		-	
Nuclear power stations		-			-						-				-		-	-	-			_	-	_			-		\vdash		-			
Boiler feed applications Boiler recirculation			-		_				_		_					-	_		+			_	-				-		\vdash					
Waste water treatment plants			-		_						_				_	\rightarrow	_		-	—		_	-	_			-				ŀ			_
Air-conditioning systems					-											+			+			_	-				-		H		ŀ			—
Condensate transport			-																+				-				-		H	F	ŀ			—
Cooling circuits																							-								ŀ	_		—
Paint shops																\neg															ŀ			_
Food and beverage industry																				_														—
Seawater desalination / reverse osmosis																																		_
Mixing																									1									_
Offshore platforms																									1									_
Paper and pulp industry																																		_
Petrochemical industry																																		_
Pharmaceutical industry																																		
Pipelines and tank farms																													\square			_		
Refineries					_						_						_												\square					_
Flue gas desulphurisation																											_							
Rainwater harvesting					_				_								_		-			_	-	_			-					\rightarrow		
Cleaning of stormwater tanks / storage sewers					_				_		_				_	\rightarrow	_		-			_	-				-				ŀ	\rightarrow	_+	_
Recirculation Dredging			<u> </u>	\square	_			\vdash	-	-		\square				-+			-	\square		_		_			\vdash					+		—
Shipbuilding			-		_				_		_				-	-	_		+				-				-		\vdash		ŀ	\rightarrow		
Sludge disposal			-		-											\rightarrow			+	-		-	-				-		$\left - \right $		ŀ			—
Sludge processing			-		-											\rightarrow			-			_	-			-			\vdash					—
Snow-making systems											-								-			_	-								ŀ		-	—
Heavy oil and coal upgrading																			1							F	+-		F		ŀ			—
Swimming pools																																		_
Solar thermal energy systems																													\square					_
Fountains																																		_
Keeping in suspension																																		
Thermal oil circulation																																$ \rightarrow$		
Draining of pits, shafts, etc.								\square											-								-					_		
Process engineering			<u> </u>														_		-					_			-							
Heat recovery systems								$\mid \mid$									_		_					_			-				-			
Hot-water heating systems			<u> </u>	\square	_			\vdash	_		_	\square	\square			_	_		-			_		_		H	-		-	9	-		-	_
Washing plants			-	\square	_			-	_								-		-			_		_					H	-	-	_		_
Water treatment Water extraction								\vdash	-	-						-+	-[]		-	\square		-					-		H		-			_
Water supply					-		-	\vdash	\neg		_	\vdash	\square			\rightarrow			+	-		-					-		H	H				—
Sugar industry				-	-		_		\neg			\vdash	\square			+		┣	+	-		-		+					H			_		—
5450																													_					_

Drive, variable speed system and monitoring

KSB SuPremE

KSB UMA-S


1.06.1	Number of pumps U [V] Other mains voltages on request	Description Permanent-magnet submersible synchronous motor, for operation on a KSB PumpDrive R variable speed system. NEMA connections and identical outside diameters ensure full interchangeability with comparable 6-inch or 8-inch asynchronous motors. The motor is controlled without rotor position sensors. The motor efficiency is 5 - 12 % above that of asynchronous motors. Given the design and functionality the use of permanent magnets is essential. Applications Exclusively for submersible borehole pumps in the range of 4 to 150 kW.
		http://shop.ksb.com/catalog/k0/en/product/ES000003

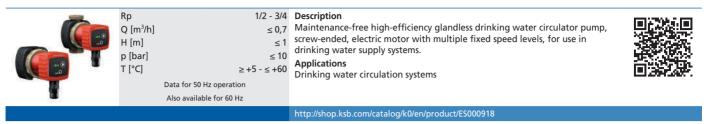
PumpDrive 2 / PumpDrive 2 Eco

	of analog standard signals, a field bus or the control nanel. As PumpDrive is
--	---

http://shop.ksb.com/catalog/k0/en/product/ES000911

PumpDrive R

PumpMeter


Number of pumps ≤ U [V DC] 24	 Description Device for monitoring the operation of one pump. It is an intelligent pressure transmitter for pumps, with on-site display of measured values and operating data. It records the load profile of the pump in order to indicate any potential for optimising energy efficiency and availability. The device comprises two pressure sensors and a display unit. PumpMeter is supplied completely assembled and parameterised for the pump it is used with. It is ready for operation as soon as the M12 plug connector is plugged in. Applications Air-conditioning systems, cooling circuits, cooling lubricant distribution, heating systems, water transport systems, water extraction systems
	http://shop.ksb.com/catalog/k0/en/product/ES000807

KSB Guard

Number of pumps U [V AC] U [V DC]	≤ 20 (per gateway) 110 - 240 (gateway) 2 x 1,5 (sensor)	System for monitoring the condition of pumps: Sensors on the pump record vibration and temperature data, which is processed in the KSB Cloud.	
		http://shop.ksb.com/catalog/k0/en/product/ES000938	

Drinking water circulators, fixed speed

Calio-Therm S NC/NCV

Calio-Therm NC

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤7 ≤10	drinking water supply systems and hot water supply systems. Applications Drinking water supply systems, hot water supply systems and similar systems in industry and building services (e.g. cooling water recirculation)
		http://shop.ksb.com/catalog/k0/en/product/ES000928

Drinking water circulators, variable speed

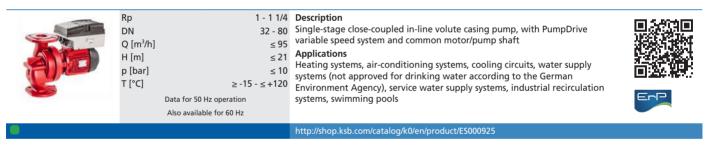
Calio-Therm S

Circulators, variable speed

Calio S

	≤ 3,5 ≤ 6 ≤ 10	Heating, ventilation, air-conditioning and neat recovery systems, cooling	
		http://shop.ksb.com/catalog/k0/en/product/ES000910	

Calio


Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems
	http://shap.ksh.com/catalog/k0/ep/product/ES000881

Calio Z

Rp DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	$\begin{array}{c} 1 \ 1/4 \\ 32 \ - \ 65 \\ \leq \ 70 \\ \leq \ 18 \\ \leq \ 16 \\ \geq \ -10 \ - \ \leq \ +110 \\ \leq \ 4500 \end{array}$ Data for 50 Hz operation Also available for 60 Hz	Maintenance-free high-efficiency flanged or screw-ended glandless pump in twin pump design with high-efficiency electric motor and continuously variable differential pressure control. Applications Heating, ventilation, air-conditioning and heat recovery systems, cooling systems, industrial recirculation systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000913	

In-line pumps

Etaline L

Etaline DL

Rp DN Q [m³/h] H [m] p [bar] T [°C]	≤ 150	Single-stage close-coupled in-line volute casing pump as twin pump, with	
		http://shop.ksb.com/catalog/k0/en/product/ES000926	

Etaline

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 700 ≤ 96 ≤ 16	KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; pump shaft and motor shaft are rigidly connected. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000113	

Etaline Z

DN Q [m³/h] H [m] p [bar] T [°C]	< 1095	variable speed system; pump shaft and motor shaft are rigidly connected. An M12 module (accessory) enables redundant operation of Etaline Z without the need for a higher-level controller. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Hot water heating, cooling circuits, air-conditioning, water supply systems, service water supply systems, industrial recirculation systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000114	

Etaline-R

H F	DN Q [m³/h] Η [m] ρ [bar] Τ [°C]	< 1900		
--------	--	--------	--	--

http://shop.ksb.com/catalog/k0/en/product/ES000812

ILN

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 3100	Applications Hot-water heating systems, cooling circuits, air-conditioning systems, marine applications, water and service water supply systems, cleaning systems and industrial recirculation systems
Control unit			http://shap.ksh.com/catalog/k0/ep/product/ES000730

Control unit

ILNC

	≤ 370	Applications
Control unit		http://shop.ksb.com/catalog/k0/en/product/ES000731

Megaline

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600	curved vanes, single mechanical seal to EN 12756.	
		http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=megaline	

Standardised / close-coupled pumps

Etanorm

http://shop.ksb.com/catalog/k0/en/product/ES000062	H P) [m³/h] I [m] I [bar] I [°C]	≤ 640 < 160	shaft sleeves / shaft protecting sleeves and casing wear rings, with motor- mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling water circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems	
--	-----	--	----------------	--	--

Etanorm-R

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1900	Horizontal long-coupled single-stage (two-stage for pump size 125-500) volute casing pump in back pull-out design, with replaceable shaft sleeves / shaft protecting sleeves and casing wear rings, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system; ATEX- compliant version available. Applications Water supply systems, spray irrigation systems, drainage systems, air- conditioning systems, fire-fighting systems, general irrigation systems, heating systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000058	

Etabloc

to the pump materials in water supply systems, cooling circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems http://shop.ksb.com/catalog/k0/en/product/E5000107	with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications	Data for 50 Hz operation operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed	(exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with	p Ibard speed system. With KSB SuPremE, a magnetless synchronous reluctance motor	a provide the standard sector and sector provide the standard sector is a sector of the standard sector sector of the standard sector of the standard sector of the standa		DN 25 - 150 Description		DN Q [m³/h] H [m] p [bar] T [°C]	$\leq 660 \\ \leq 140 \\ \leq 16 \\ \geq -30 - \leq +140$ Data for 50 Hz operation	Single-stage close-coupled volute casing pump, with ratings to EN 733, with replaceable shaft sleeve and casing wear rings, with motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX-compliant version available. Applications Pumping clean or aggressive liquids not chemically or mechanically aggressive to the pump materials in water supply systems, cooling circuits, swimming pools, fire-fighting systems, irrigation systems, drainage systems, heating systems, air-conditioning systems, spray irrigation systems	
---	---	---	---	---	--	--	-------------------------	--	--	--	---	--

Etachrom B

DN Q [m³/h] H [m] p [bar] T [°C]	mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with	
	Cleaning systems (bottle rinsing, crate washing, etc.), water treatment plants, water supply systems, fire-fighting systems, spray irrigation systems, general irrigation systems, drainage systems, hot-water heating systems, air- conditioning systems, industrial washing plants, general industry, disposal of paint sludge, surface treatment	
	http://shop.ksb.com/catalog/k0/en/product/ES000066	

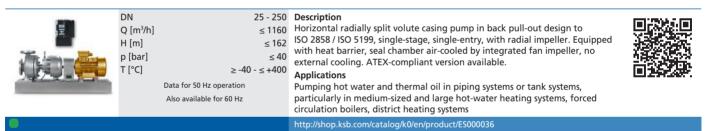
Etachrom L

DN Q [m ³ /h] H [m] p [bar] T [°C]	$25 - 80$ ≤ 260 ≤ 105 ≤ 12 $\geq -30 - \leq +110$ Data for 50 Hz operation Also available for 60 Hz	dimensions to EN 733, with replaceable casing wear rings and motor-mounted variable speed system. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are	
		http://shop.ksh.com/catalog/k0/ep/product/ES000065	

Etanorm V

http://shop.ksb.com/catalog/k0/en/product/ES000015			≤ 625	 Description Single-stage volute casing pump for vertical installation in closed tanks under atmospheric pressure, with ratings to EN 733. Suitable for immersion depths of up to 2000 mm. Applications Phosphating solutions, lubricating oil supply and sealing oil supply for turbines, generators, large compressors, large gear units 	
--	--	--	-------	--	--

Meganorm


DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz or Also available for	≤ 1160 ≤ 162 ≤ 16 $\geq -30 - \leq +140$ peration or 60 Hz	Description Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to DIN EN ISO 2858/ISO 5199. Available with cylindrical or conical shaft seal chamber. Applications Water supply systems, dewatering systems, irrigation systems, sugar industry, alcohol industry, air-conditioning systems, building services systems, fire- fighting systems	
--	--	--	--

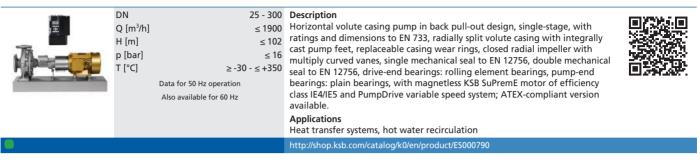
Megabloc

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 550 < 140	(optional), replaceable casing wear rings. Volute casing with closed radial impeller with multiply curved vanes, single mechanical seal to EN 12756.	
		http://www.ksb.com.br/ksb-br-pt/pesquisa.php?_q=Megabloc	

Hot water pumps

HPK-L

HPK


DN Q [m³/h] H [m] p [bar] T [°C]	TRD type testing by TÜV. ATEX-compliant version available.
	http://shap.ksh.com/catalog/k0/en/product/ES000034

HPH

DN Q [m³/h] H [m] p [bar] T [°C]	< 2350	Description Horizontal radially split volute casing pump in back pull-out design, with centreline pump feet, with radial impeller, single-entry, single-stage. Optional TRD type testing by TÜV. ATEX-compliant version available. Applications Pumping hot water in high-pressure hot water generation plants, as boiler feed or recirculation pump.
		http://shop.ksb.com/catalog/k0/en/product/ES000037

Hot water / thermal oil pumps

Etanorm SYT / RSY

Etabloc SYT

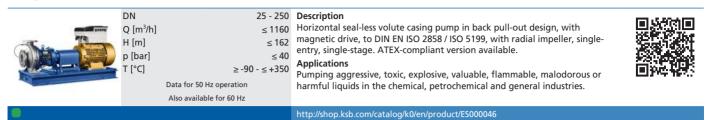
DN Q [m³/h] H [m] p [bar] T [°C]	≤ 280 < 68	ball bearing, product-fubricated carbon plan bearing, grease-fubricated radia ball bearing in the motor housing, with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system, ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation	
		http://shop.ksb.com/catalog/k0/en/product/ES000791	

Etaline SYT

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 316 < 69	system; pump shaft and motor shaft are rigidly connected. ATEX-compliant version available. Applications Heat transfer systems, hot water recirculation	
		http://shop.ksb.com/catalog/k0/en/product/ES000789	

Standardised chemical pumps

MegaCPK


Suit.	DN Q [m³/h] H [m] p [bar] T [°C]	6.55 KW 70.75 KW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors. Motor mounting points in accordance with EN 50347, envelope dimensions in accordance with DIN V 42673 (07-2011). ATEX- compliant version available. Applications Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical and petrochemical industries, in refineries, power stations and desalination plants as well as in the food industry and general industry.	
		http://shop.ksb.com/catalog/k0/en/product/ES000861	

CPKN

	DN	150 - 400	Description	
1	Q [m³/h] H [m] p [bar] T [°C]	- 4150	Horizontal radially split volute casing pump in back pull-out design, with radial impeller, single-entry, single-stage, to ISO 2858 / ISO 5199. Also available as a variant with "wet" shaft, conical seal chamber and/or semi- open impeller (CPKNO). ATEX-compliant version available.	
			http://shop.ksb.com/catalog/k0/en/product/ES000027	

Seal-less pumps

Magnochem

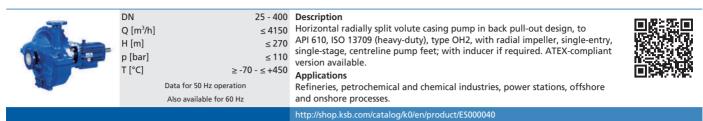
Magnochem 685

	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 1160	Description Horizontal seal-less volute casing pump, with magnetic drive, radial impeller, single-entry, single-stage. Design to ISO 15783 / API 685 (centreline mounting, ASME flanges, and twice the permissible nozzle forces). ATEX-compliant version available. Applications Pumping aggressive, toxic, explosive, valuable, flammable, malodorous or harmful liquids in the chemical, petrochemical and general industries.
--	--	--------	--

Magnochem-Bloc

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 625 ≤ 162 < 40	single-entry, single-stage. ATEX-compliant version available.
		http://shop.ksb.com/catalog/k0/en/product/ES000045

Etaseco / Etaseco-I


1	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 250 < 100	line design.
			http://shop.ksb.com/catalog/k0/en/product/ES000122

Etaseco RVP

0	DN Q [m³/h] H [m] p [bar] T [°C]	25 - 40 ≤ 44 ≤ 40 ≤ 16 $\geq -50 - \leq +110$ Data for 50 Hz operation Also available for 60 Hz	Horizontal or vertical seal-less volute casing pump in back pull-out design with fully enclosed canned motor, low noise emission, with radial impeller, single-stage, single-entry, casing connecting dimensions to EN 733, or in in- line design. Applications Pumping toxic, volatile or valuable liquids in environmental engineering and industrial applications and as coolant pump in cooling systems. Transport vehicles, environmental engineering and industry; applications where low noise emission, smooth running or long service intervals are required.	
			http://shop.ksb.com/catalog/k0/en/product/ES000122	

Process pumps

RPH

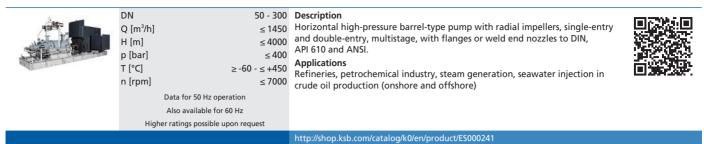
RPH-LF

DN Q [m³/h] H [m] T [°C]	(ISO 13709) type OH2 Special design for low flow rates ATEX-compliant	
	http://shop.ksb.com/catalog/k0/en/product/ES000945	

RPHb / RPHd

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 4500	compliant version available.	
		http://shap.ksh.com/satalog/k0/ap/product/ES000041	

RPH-V


	< 160	Vertical radially split volute casing pump to API 610 and ISO 13709 (heavy- duty), type VS4, with radial impeller, single-entry, single-stage. Applications Refineries, petrochemical and chemical industries, offshore and onshore processes.	
		http://shop.ksb.com/catalog/k0/en/product/ES000880	

CTN

DN Q [m³/h] H [m] p [bar] T [°C]	$\begin{array}{l} 25-250/250-400\\ \leq 950\\ \leq 115\\ \leq 16\\ \geq 0-\leq +300\\ \end{array}$ Data for 50 Hz operation Also available for 60 Hz	Radially split vertical shaft submersible pump with double volute casing for wet and dry installation, with radial impeller, single-entry, single-stage or two-stage; heatable model available. ATEX-compliant version available.
		http://shop.ksb.com/catalog/k0/en/product/ES000014

CHTR

Pumps

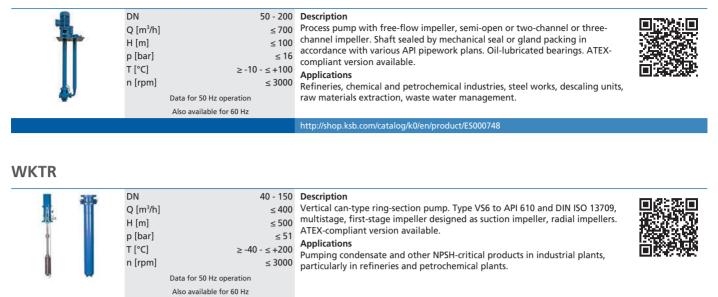
CHTRa

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1200 ≤ 1550 ≤ 155 ≥ -40 - ≤ +205	(ISO 13709), type BB3. First stage optionally available in double-entry design for low NPSH requirements. ATEX-compliant version available.
		http://shop.ksb.com/catalog/k0/en/product/ES000933

CINCP / CINCN

ļ	$Q [m^3/h]$ ≤ 78 H [m] ≤ 10 p [bar] ≤ 1	 bearings in the upper section of the pump set. Supplied with discharge pipe extending above the baseplate (CINCP) or without discharge pipe (CINCN). ATEX-compliant version available.
		http://shop.ksb.com/catalog/k0/en/product/ES000718

INVCP


-tt	$\begin{array}{c c} {\sf DN} & & 32 - 300 \\ {\sf Q} \; [m^3/h] & \leq 1600 \\ {\sf H} \; [m] & \leq 116 \\ {\sf p} \; [bar] & \leq 10 \\ {\sf T} \; [^\circ {\sf C}] & \geq -10 - \leq +100 \\ {\sf n} \; [rpm] & \leq 3000 \\ \\ & \\ {\sf Data \; for \; 50 \; Hz \; operation} \\ {\sf Also \; available \; for \; 60 \; Hz} \end{array}$	Vertical immersion pump for wet or dry installation, available with closed or semi-open impeller. Supplied with discharge pipe extending above the baseplate (INVCP) or without discharge pipe (INVCN). ATEX-compliant version available. Applications	
-----	---	--	--

http://shop.ksb.com/catalog/k0/en/product/ES000737

Estigia

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	< 1160	Vertical immersion pump for wet installation with closed impeller, to DIN EN ISO 5199 (with comments). Supplied with discharge pipe extending above the cover plate, DN according to nominal flow rate. Sealing by lip seal, single or double cartridge mechanical seal. ATEX-compliant version available.
KSB SuPremE, PumpDrive, Frequency inverter			http://shop.ksb.com/catalog/k0/en/product/ES000937

RWCP / RWCN



http://shop.ksb.com/catalog/k0/en/product/ES000875

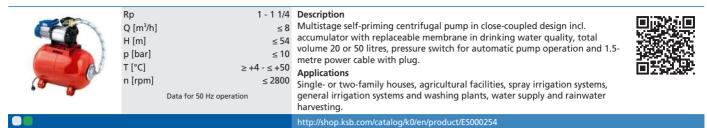
41

Rainwater harvesting systems

Hya-Rain / Hya-Rain N

Hya-Rain Eco

Rp Q [m³/h] H [m] p [bar] T [°C]	1 ≤ 4 ≤ 43 ≤ 6 ≥ 0 - ≤ +35 Data for 50 Hz operation	Description Basic ready-to-connect package rainwater harvesting system with automatic mains water back-up function if the rainwater storage tank is empty, with integrated dry running protection and demand-driven automatic pump control. Applications Rainwater harvesting and service water harvesting, general irrigation and spray irrigation systems.	
		http://shop.ksb.com/catalog/k0/en/product/ES000600	


Domestic water supply / swimming pool pumps

Multi Eco

Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	$\begin{array}{l} 1 - 1 \ 1/4 \\ \leq 8 \\ \leq 54 \\ \leq 10 \\ \geq +4 - \leq +50 \\ \leq 2800 \end{array}$ Data for 50 Hz operation	Multistage self-priming centrifugal pump in close-coupled design, with power cable, plug and Controlmatic E automatic control unit starting and stopping the pump in line with consumer demand and protecting it against dry running. Automated with automatic control unit.	
		http://shop.ksb.com/catalog/k0/en/product/ES000253	

Multi Eco-Top

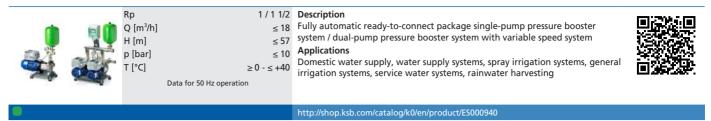
Ixo N

J	Rp Q [m ³ /h] H [m] T [°C] n [rpm]	Multistage close-coupled centrifugal pump for fully or partly submerged operation (min. immersion depth 0.1 m), with low-level inlet, suction strainer with a max. mesh width of 2.0 mm.	
Control unit, Cervomatic		http://shop.ksb.com/catalog/k0/en/product/ES000007	

Ixo-Pro

Rp Q [m³/h] H [m] T [°C]	≤ 3,9	Description Multistage submersible borehole pump with integrated pressure switch, flow sensor and lift check valve. Electronic dry running protection with four consecutive start-up attempts; integrated capacitor. 15-metre H07 RN-F power cable with shockproof plug included. Applications Rainwater harvesting, pressure boosting, water extraction, irrigation systems	
		http://shop.ksb.com/catalog/k0/en/product/ES000896	

Filtra N


Rp Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Dat	≤ 36 ≤ 21 ≤ 2,5	Description Single-stage self-priming centrifugal pump in close-coupled design. Applications Pumping clean or slightly contaminated water, swimming pool water with a max. chlorine content of 0.3 %; ozonised swimming pool water with a max. salt content of 7 ‰.	
		http://shop.ksb.com/catalog/k0/en/product/ES000090	

Pressure booster systems

KSB Delta Macro F/VC/SVP

Rp Q [m³/h] H [m] p [bar] T [°C]	1 1/2 ≤ 960 ≤ 155 ≤ 16 ≥ 0 - ≤ +60 Data for 50 Hz operation	Fully automatic package pressure booster system with two to six vertical high- pressure pumps; available in cascade-controlled and two variable speed versions. Cascade control (F) for ensuring the required supply pressure. The VC and SVP versions ensure variable speed control of each pump by cabinet- mounted frequency inverter (VC) or motor-mounted PumpDrive variable speed system and KSB SuPremE motor (SVP), respectively, providing fully electronic control to ensure the required supply pressure. Automated with BoosterControl. Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000978	

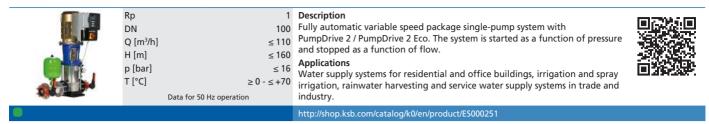
KSB Delta Solo/Basic Compact MVP

KSB Delta Basic MVP/SVP

Rp Q [m³/h] H [m] p [bar] T [°C]	- 124	Fully automatic pressure booster system with two to three (MVP) / four (SVP) vertical high-pressure pumps in two variable speed versions. The frequency inverter operated MVP and SVP versions ensure variable speed control of each pump by motor-mounted frequency inverter for asynchronous motors (MVP)
		http://shop.ksb.com/catalog/k0/en/product/ES000942

KSB Delta Primo F/VC/SVP

		•	two variable speed versions. Cascade control (F) for ensuring the required supply pressure. The frequency inverter operated VC and SVP versions ensure	
--	--	---	--	--


KSB Delta Solo MVP/SVP

		$\left[\begin{array}{cc} m^{3}/h \end{array} \right] \leq 76$ H [m] ≤ 134 p [bar] ≤ 16 T [°C] $\geq 0 - \leq +60$ Data for 50 Hz operation	Fully automatic single-pump system available in two variable speed versions. The frequency inverter operated MVP and SVP versions ensure variable speed
--	--	---	--

Hya-Solo D

Rp DN Q [m³/h] H [m] p [bar] T [°C]	$\begin{array}{c} 1\\ 100\\ \leq 110\\ \leq 160\\ \leq 16\\ \geq 0 - \leq +70\\ \end{array}$ Data for 50 Hz operation	accumulator. The system is started and stopped as a function of pressure. Applications Water supply systems for residential and office buildings, irrigation and spray irrigation, rainwater harvesting and service water supply systems in trade and	
		http://shop.ksb.com/catalog/k0/en/product/ES000250	

Hya-Solo DSV

Hya-Solo D FL

Rp DN Q [m³/h] H [m] p [bar] T [°C]	100	Fire fighting systems to DIN 14462	
		http://shop.ksb.com/catalog/k0/en/product/ES000709	

Hya-Duo D FL

- F	DIN 14462. Applications Fire-fighting systems to DIN 14462
	http://shop.ksb.com/catalog/k0/en/product/ES000710

Hya-Solo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	started and stopped as a function of pressure. Design and function as per DIN 14462.
	http://shop.ksb.com/catalog/k0/en/product/ES000821

Hya-Duo D FL Compact

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 48 < 160	pressure. Design and function as per DIN 14462.
		http://shop.ksb.com/catalog/k0/en/product/ES000820

Hyamat K

Pumps

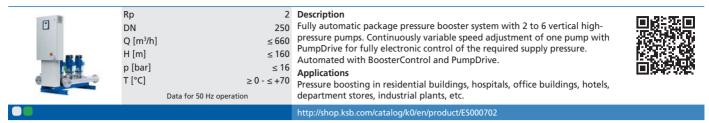
Q $[m^3/h]$ ≤ 660 H $[m]$ ≤ 160 p $[bar]$ ≤ 16	near we with walt free shanneaver contact for general fault indication and
	http://shop.ksb.com/catalog/k0/en/product/ES000247

Hyamat V

Rp DN Q [m³/h] H [m] p [bar] T [°C]	250 ≤ 660 ≤ 160 ≤ 16	Description Fully automatic package pressure booster system with 2 to 6 vertical high- pressure pumps and continuously variable speed adjustment of one pump; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with BoosterControl. Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industry, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000417	

Hyamat SVP

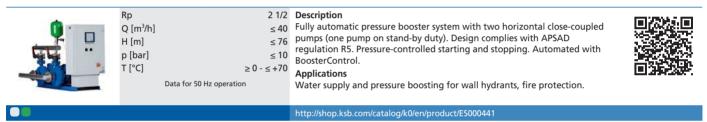
Rp DN Q [m³/h] H [m] p [bar] T [°C]	250 ≤ 660 ≤ 160 ≤ 16	PumpDrive; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with BoosterControl and
		http://shop.ksb.com/catalog/k0/en/product/ES000418


Hyamat SVP ECO

Rp DN Q [m³/h] H [m] p [bar] T [°C]	250 ≤ 660 ≤ 160 ≤ 16	PumpDrive; for fully electronic control of the required supply pressure. Design and function as per DIN 1988. Automated with PumpDrive.
		http://shop.ksb.com/catalog/k0/en/product/ES000935

Surpresschrom SIC.2

p [bar]	250 ≤ 660 ≤ 160 ≤ 16	Description Fully automatic package pressure booster system with 2 to 6 vertical high- pressure pumps, with fully electronic control system ensuring the required supply pressure, with volt-free changeover contact for general fault indication and broken wire detection (live-zero) of the connected sensors. Automated with BoosterControl. Applications Pressure boosting in residential buildings, hospitals, office buildings, hotels, department stores, industrial plants, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000439	

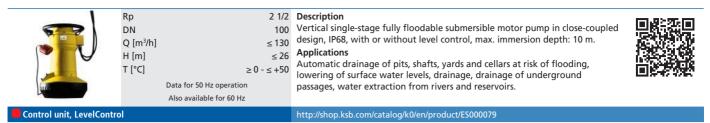

Surpresschrom SIC.2 V

Surpresschrom SIC.2 SVP

Rp DN Q [m³/h] H [m] p [bar] T [°C]	250 ≤ 660 ≤ 160 ≤ 16	PumpDrive for fully electronic control of the required supply pressure. Automated with BoosterControl and PumpDrive.	
		http://shop.ksb.com/catalog/k0/en/product/ES000701	

Surpress Feu SFE

Drainage pumps / waste water pumps

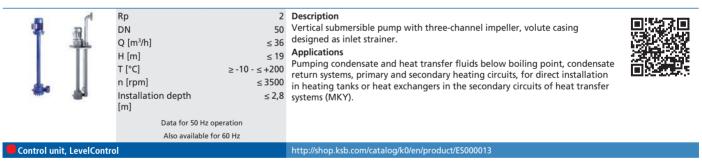

Ama-Drainer N

1111	Rp Q [m³/h] H [m] T [℃]	< 16.5	A	
Control unit, LevelContro	bl		http://shop.ksb.com/catalog/k0/en/product/ES000771	

Ama-Drainer 4../5..

	Rp Q [m³/h] H [m] T [°C]	< 50	Description Vertical single-stage fully floodable submersible motor pump in close-coupled design, IP68, with or without level control, max. immersion depth: 7 m. Applications Automatic drainage of pits, shafts, yards and cellars at risk of flooding, lowering of surface water levels, drainage, drainage of underground passages, water extraction from rivers and reservoirs.	
Control unit, LevelContr	ol		http://shop.ksb.com/catalog/k0/en/product/ES000078	

Ama-Drainer 80, 100


Ama-Porter F / S

	DN Q [m³/h] H [m] T [°C]	≤ 40 < 16	 Description Vertical single-stage fully floodable submersible waste water pump in close-coupled design (grey cast iron variant), non-explosion-proof. Applications Handling waste water, especially waste water containing long fibres and solid substances, liquids containing gas/air, removing waste water from flooded rooms and surfaces.
Control unit, LevelContro	ol		http://shop.ksb.com/catalog/k0/en/product/ES000082

Rotex

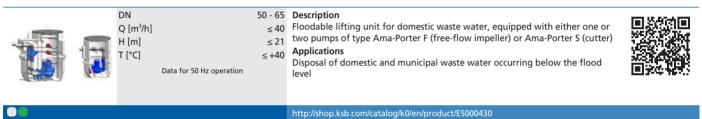
Q [m³/h] \leq 24 H [m] \leq 14 T [°C] \geq 0 - \leq +90 n [rpm] \leq 2900	and motor are rigidly connected by a support column. Supplied ready to be plugged in, with 1.5-metre power cable and level switch.
	http://shop.ksb.com/catalog/k0/en/product/ES000012

MK / MKY

Lifting units / package pump stations

Amaclean

•	Ø [mm] DN Installation depth [m]	50 - 100	Description Self-cleaning tank insert for grouted installation in new concrete structures or in concrete structures in need of refurbishment. Designed to prevent soiling of the structure and clogging of the pumps by heavily waste or fibre loaded waste water. Suitable for pump stations emitting unpleasant odours and/or gases. Applications Waste water disposal, rainwater disposal	
			http://shop.ksb.com/catalog/k0/en/product/ES000936	


Ama-Drainer-Box Mini

Ama-Drainer-Box

12 12	10 22 u	DN Q [m³/h] H [m] T [°C]	:	< 46	Description Stable above-floor plastic collecting tank or impact-resistant underfloor plastic collecting tank, with floor drain and odour trap, both with Ama- Drainer submersible motor pump starting and stopping automatically and swing check valve Applications Automatic disposal of waste water from washbasins, showers, washing machines, garage driveways, basements and rooms prone to flooding	
					http://shop.ksb.com/catalog/k0/en/product/ES000262	

Evamatic-Box N

mini-Compacta

	KSB D.		:	≤ 36 ≤ 25 ≤ +40	Description Floodable single-pump sewage lifting unit or dual-pump sewage lifting unit for automatic disposal of domestic waste water and faeces in building sections below the flood level. Applications Basement flats, bars, basement party rooms, basement saunas, cinemas, theatres, department stores, hospitals, hotels, restaurants, schools.	
--	--------	--	---	-----------------------	---	--

Compacta

 DN Q [m³/h] H [m] T [°C]	< 140	Applications Basement flats, bars, basement party rooms and saunas, cinemas and theatres, department stores and hospitals, hotels, restaurants, schools, other public buildings, industrial facilities, underground train stations or for joint sewage disposal from rows of houses.	
		http://shop.ksb.com/catalog/k0/en/product/ES000260	

CK 800 Pump Station

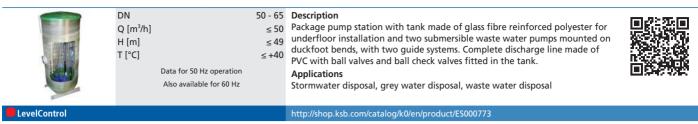
DN Q [m³/h] H [m] T [°C] Data for 50 Hz operation	with PE-LLD (polyethylene) collecting tank for buried installation. Equipped with either one or two submersible waste water pumps of type Amarex N S (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion- proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage	
	http://shop.ksb.com/catalog/k0/en/product/ES000778	

CK 1000 Pump Station

-1.	DN Q [m³/h] H [m] T [°C]	with either one or two submersible waste water pumps of type Amarex N (explosion-proof or non-explosion-proof) or Ama-Porter (non-explosion- proof). Tank design to DIN 1986-100 and EN 752/EN 476. Applications Drainage of buildings and premises, waste water disposal, premises renovation, joint sewage disposal for multiple residential units, pumped drainage
		http://shop.ksb.com/catalog/k0/en/product/ES000266

Ama-Porter CK Pump Station

DN Q [m³/h] H [m] T [°C]	with either one or two submersible waste water pumps of type Ama-Porter	
	http://shop.ksb.com/catalog/k0/en/product/ES000498	


SRP

	DN Q [m³/h] H [m] T [°C]	≤ 500 < 7 ¹	Description Single-pump station or dual-pump station as ready-to-connect package system, with fibreglass collecting tank for buried installation Applications Premises renovation, disposal of domestic, municipal and industrial waste water, joint sewage disposal for multiple residential units
Control unit, LevelControl			http://shop.ksb.com/catalog/k0/en/product/ES000443

SRL

DN Q [m³/h] H [m] T [°C] Data	20 k/W integrated valves and a control unit with frequency invertors. Dump
	http://shop.ksb.com/catalog/k0/en/product/ES000856

SRS

Submersible motor pumps

Amarex

	DN Q [m³/h] H [m] T [°C]	≤ 320	Description Vertical single-stage submersible motor pump for wet installation, with free- flow impeller (F-max) or open dual-vane impeller (D-max), stationary or transportable version. Single-stage, single-entry close-coupled pump sets which are not self-priming. ATEX-compliant version available. Applications Waste water transport, waste water management, drainage systems, waste water treatment plants, stormwater transport, recirculation, sludge treatment	
Control unit, LevelControl			http://shop.ksb.com/catalog/k0/en/product/ES000979	

Amarex N

	DN Q [m³/h] H [m] T [°C] Data for 50 Hz operatic Also available for 60 H	≤ 190 ≤ 49 ≤ +40	transportable version Amarox N numps are floodable single stage single	
Control unit, LevelContro			http://shop.ksb.com/catalog/k0/en/product/ES000507	

Amarex KRT

	DN Q [m ³ /h] H [m] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 10080 ≤ 120 ≤ +60 ≤ 2900	design, with various next-generation impeller types, for wet or dry installation, stationary or transportable version, with energy-saving motor and models for use in potentially explosive atmospheres.	
PumpDrive, Amacontrol,	LevelControl		http://shop.ksb.com/catalog/k0/en/product/ES000092	

Submersible pumps in discharge tubes

Amacan K

	$ \begin{array}{ll} Q \left[m^{3} / h \right] & \leq 5 \\ H \left[m \right] & \leq \\ T \left[^{\circ} C \right] & \geq 0 - \leq \cdot \\ \end{array} $	Applications Handling pre-cleaned chemically neutral waste water, industrial effluent and sewage, fluids not containing any stringy substances, pre-treated by screens or overflow sills; as waste water, mixed sewage and activated sludge pumps in waste water treatment plants, irrigation and drainage pumping stations.
Amacontrol		http://shop.ksb.com/catalog/k0/en/product/ES000100

Amacan P

	DN Q [m³/h] H [m] T [°C] n [rpm]	version available. Applications Irrigation and drainage pumping stations, for stormwater transport in stormwater pumping stations, raw and clean water transport in water and waste water treatment plants, cooling water transport in power stations and industrial plants, industrial water supply, water pollution control and flood control, aquaculture.	
Amacontrol		http://shop.ksb.com/catalog/k0/en/product/ES000099	

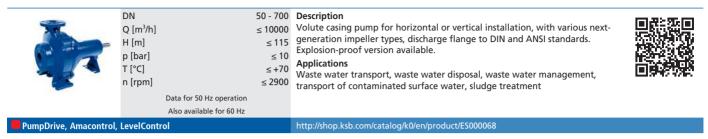
Amacan S

	DN Q [m³/h] H [m] T [°C] n [rpm]	Applications
Amacontrol		http://shop.ksb.com/catalog/k0/en/product/ES000101

Mixers / agitators / tank cleaning units

Amamix

Amaprop


	 0 - ≤ +40	Description Horizontal submersible mixer with self-cleaning ECB propeller, close-coupled design, with coaxial spur gear drive. ATEX-compliant version available. Applications In environmental engineering, particularly in municipal and industrial waste water and sludge treatment, for circulating, keeping in suspension and inducing flow in nitrification tanks and denitrification tanks, activated sludge tanks, biological phosphate elimination tanks, flocculation tanks and sludge storage tanks	
Amacontrol		http://shop.ksb.com/catalog/k0/en/product/ES000271	

Amaline

	DN Q [m³/h] H [m] T [°C] n [rpm]	≤ 6600	Applications
Amacontrol			http://shop.ksb.com/catalog/k0/en/product/ES000273

Pumps for solids-laden fluids

Sewatec

Sewatec SPN

	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation Also available for 60 Hz	≤ 32400 ≤ 115 ≤ 16 ≤ +70	Description Vertical volute casing pump with multi-channel impellers (K), discharge flange to DIN and ANSI standards. Applications Waste water transport, waste water disposal, waste water management, transport of contaminated surface water
--	---	-----------------------------------	--

Sewabloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	50 - 200 ≤ 1000 ≤ 90 ≤ 10 ≤ +70 ≤ 2900	Close-coupled volute casing pump for horizontal or vertical installation, with various next-generation impeller types, discharge flange to DIN and ANSI standards. Explosion-proof version available. Applications Waste water transport, waste water disposal, waste water management.	
PumpDrive, LevelContro			http://shop.ksb.com/catalog/k0/en/product/ES000069	

KWP

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	$\begin{array}{l} 40 - 900 \\ \leq 15000 \\ \leq 100 \\ \leq 100 \\ \geq 10 \\ \geq -40 - \leq +140 \\ \leq 2900 \end{array}$ Data for 50 Hz operation Also available for 60 Hz	stage, single-entry, available with various impeller types: closed multi-channel impeller, open multi-vane impeller and free-flow impeller. ATEX-compliant version available. Applications	
PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000018	

KWP-Bloc

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 325 ≤ 100 ≤ 10	Applications	
PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000020	

Slurry pumps

WBC

Q [m³/h] H [m] p [bar] T [°C]	designed to withstand maximum stresses, e.g. during pressure surges	
	http://shop.ksb.com/catalog/k0/en/product/ES000227	

LSA-S

Q [m³/h] H [m] p [bar] T [°C]	≤ 150	Description Premium design white cast iron pump for long service life handling severe slurries. The maintenance-friendly single-wall construction and heavy section white cast iron wet end combined with the cartridge bearing assembly provide maximum reliability, a long service life and ease of maintenance. Applications Ore and tailings transport, cyclone feed, dredging (dry-installed or submerged operation) and industrial processes.	
		http://shop.ksb.com/catalog/k0/en/product/ES000220	

LCC-M

Q [m³/h] H [m] p [bar] T [°C]	< 90	Description The wetted pump end (casing, impeller and suction plate / liner) is made of white cast iron. Design optimised to permit easy dismantling and reassembly for maintenance and inspections. Applications Reliable pump for high heads and moderately corrosive slurries. Used in mine dewatering, ash and tailings transport and dredging.
		http://shop.ksb.com/catalog/k0/en/product/ES000217

LCC-R

Q [m³/h] H [m] p [bar] T [°C]	 A un line time	
	http://shop.ksb.com/catalog/k0/en/product/ES000218	

TBC

Q [m³/h] H [m] p [bar] T [°C]	≤ 90	design transfers stress loads from the wear plates to the casing covers in high- pressure applications. Pump components made of highly wear-resistant white cast iron. Applications High-head high-flow hydrotransport of tailings, dredged material, pipeline booster stations and other severe duties.	
		http://shop.ksb.com/catalog/k0/en/product/ES000226	

LCV

P	Q [m³/h] H [m] p [bar] T [°C]	≤ 38 < 14	rubber. Applications	
a de la de l			Applications Particularly suitable for use in industrial processes and for transporting tailings in mines and pits.	el 2945apr.
			http://shop.ksb.com/catalog/k0/en/product/ES000016	

FGD

Q [m³/h] H [m] p [bar] T [°C]	< 30	Description High-flow / low-head white cast iron pump with single-wall casing and high- efficiency impeller. Single-piece suction cover with integrated mounting plate. Applications Flue gas desulpurisation systems and process circuits	
		http://shop.ksb.com/catalog/k0/en/product/ES000231	

MHD

Q [m³/h] H [m] p [bar] T [°C]	≤ 115	susting behaviour and bigh officiancy. Duran components made of white cost	
		http://shop.ksb.com/catalog/k0/en/product/ES000224	

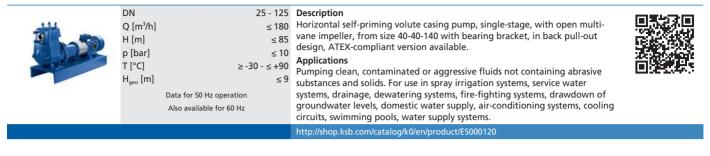
LHD

Q [m³/h] H [m] p [bar] T [°C]	 Description Horizontal volute casing pump for high-volume hydrotransport of solids. For pumping slurries of large and very large particle sizes with a very good suction behaviour and high efficiency. Used in low-pressure applications. Pump components made of white cast iron. Applications Ideal for handling sand and gravel, on dredgers for land reclamation and as booster pumps.	
	http://shop.ksb.com/catalog/k0/en/product/ES000223	

MDX

Q [m³/h] H [m] p [bar] T [°C]	< 90	other ore mining and treatment processes.	
		http://shop.ksb.com/catalog/k0/en/product/ES000850	

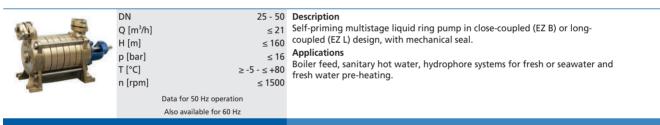
Pumps


U.	Q [m³/h] H [m] p [bar] T [°C]	≤ 35	Description Rugged vertical shaft submersible pump with casing, impeller and suction cover made of white cast iron, top and bottom impeller inlet. Long-life bearings not exposed to fluid handled. Replaceable wetted components. Applications Particularly suitable for pumping abrasive slurries, dewatering, floor clean-up and process applications.	
			http://shop.ksb.com/catalog/k0/en/product/ES000852	

HVF

Q [m³/h] H [m] p [bar] T [°C]	Description The pump provides continuous operation without shutdown or operator intervention. The new hydraulic design removes air from the impeller eye while the pump is running, and the pump can be retrofitted into any existing operation. Applications For use in all froth pumping applications in the mineral processing and industrial minerals industries.	
	http://shop.ksb.com/catalog/k0/en/product/ES000851	

Self-priming pumps

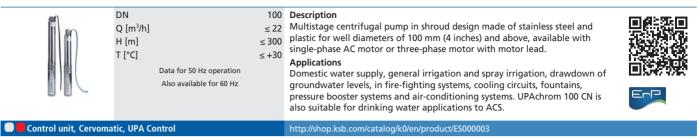

Etaprime L

Etaprime B

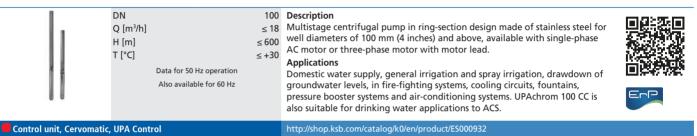
199	DN Q [m³/h]		Description Horizontal self-priming volute casing pump, single-stage, with open multi-	
	H [m]	≤ 70 < 10	vane impeller, close-coupled; pump shaft and motor shaft rigidly connected;	
	T [°C] H _{aeo} [m]	≥ -30 - ≤ +90 ≤ 9	Applications Pumping clean, contaminated or aggressive fluids not containing abrasive substances and solids. For use in spray irrigation systems, service water	
		Data for 50 Hz operation Also available for 60 Hz	systems, drainage, dewatering systems, fire-fighting systems, drawdown of groundwater levels, domestic water supply, air-conditioning systems, cooling circuits, swimming pools, water supply systems.	
			http://shop.ksb.com/catalog/k0/en/product/ES000119	

EZ B/L

AU


	DN Q [m³/h] H [m] p [bar] T [°C]	≤ 600 ≤ 52 ≤ 10 ≥ -10 - ≤ +80	available. Applications Pumping clean, contaminated and aggressive fluids also containing solids. In	
and a series		Data for 50 Hz operation Also available for 60 Hz	Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and pilge pumps, and for drainage and waste water applications.	E1284588*
			http://shop.ksb.com/catalog/k0/en/product/ES000750	

AU Monobloc


DN Q [m³/h] H [m] p [bar] T [°C]	≤ 53	Description Horizontal self-priming centrifugal pump in close-coupled design, open or semi-open impeller, adjusted via wear plate, with mechanical seal, driven by electric motors or internal combustion engines; ATEX-compliant version available. Applications Pumping clean, contaminated and aggressive fluids also containing solids. In fresh water and seawater circuits, fire-fighting applications, as ballast and bilge pumps, and for drainage and waste water applications.	
		http://shop.ksb.com/catalog/k0/en/product/ES000715	

Submersible borehole pumps

UPAchrom 100 CN

UPAchrom 100 CC

UPA 150C

	H [m]	≤ 79 < 440	Description All-stainless steel single-stage or multistage centrifugal pump in ring-section design for well diameters of 150 mm (6 inches) and above. Applications Spray irrigation systems, general irrigation systems, drawdown of groundwater levels, domestic water supply, fountains, heat pump systems, water supply systems	
PumpDrive, KSB UMA-S			http://shop.ksb.com/catalog/k0/en/product/ES000003	

PumpDrive, KSB UMA-S

UPA 200, 200B, 250C

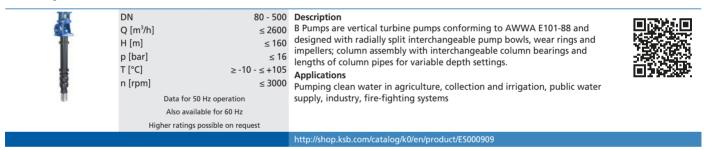
I	DN Q [m³/h] H [m] T [°C]	≤ 330 < 460	Description Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Optionally available with lift check valve or connection branch. For well diameters of 8 inches and above. Applications Pumping clean or slightly contaminated water in general water supply, spray irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, fire- fighting systems, emergency water supply, etc.
PumpDrive, KSB UMA-S			http://shop.ksb.com/catalog/k0/en/product/ES000003

UPA 300, 350

	DN Q [m³/h] H [m] T [°C]	≤ 840 < 480	Description Single-stage or multistage single-entry centrifugal pump in ring-section design for vertical or horizontal installation. Mixed flow hydraulic systems with trimmable impellers. Optionally available with lift check valve or connection branch. For well diameters of 12 inches and above. Applications Pumping clean or slightly contaminated water in general water supply, spray irrigation and general irrigation, drawdown and maintenance of groundwater levels, fountains and pressure booster systems, mining, fire- fighting systems, emergency water supply, etc.	
PumpDrive, KSB UMA-S			http://shop.ksb.com/catalog/k0/en/product/ES000003	

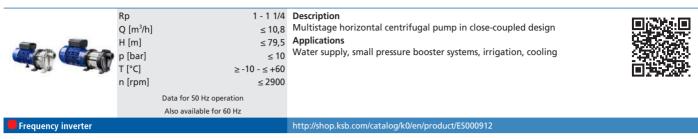
Pump)S

UPA 400-850



UPA D

DN Q [m H [m T [°C	n³/h] ≤ 500 n] < 150	 Description Multistage double-entry centrifugal pump in ring-section design for vertical or horizontal installation. Applications Pumping clean or slightly contaminated water, seawater, liquefied gases and oils in water supply, offshore and cavern applications and in groundwater management.
-----------------------------	-------------------------	--


Vertical turbine pumps

B Pump

High-pressure pumps

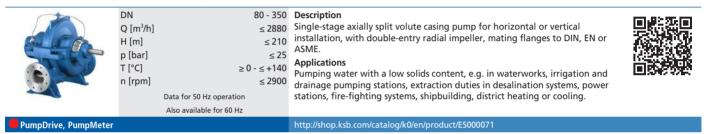
Movitec H(S)I

	Rp Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 26,3 ≤ 195 ≤ 25	0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency class IE4/IE5 to IEC TS 60034-30-2: 2016, for operation on a KSB PumpDrive 2 or KSB PumpDrive 2 Eco variable speed system without rotor position sensors.	
KSB SuPremE, PumpDrive, PumpMeter			http://shop.ksb.com/catalog/k0/en/product/ES000927	

Movitec

	Rp DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm]	≥ -20 - ≤ +140	Multistage vertical high-pressure centrifugal pump in ring-section design with suction and discharge nozzles of identical nominal diameters arranged opposite to each other (in-line design), close-coupled. With KSB SuPremE, a magnetless synchronous reluctance motor (exception: motor sizes 0.55 kW / 0.75 kW with 1500 rpm are designed with permanent magnets) of efficiency	
KSB SuPremE. PumpDrive		tor	http://shop.ksb.com/catalog/k0/en/product/ES000865	

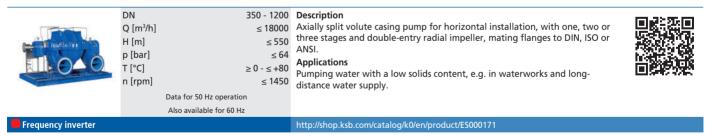
Movitec VCI


	Q [m³/h] ≤ 22,5 H [m] < 249		
KSB SuPremE, PumpDrive	2	http://shop.ksb.com/catalog/k0/en/product/ES000870	

Multitec

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1500 ≤ 1000 ≤ 100 ≥ -10 - ≤ +200	long-coupled or close-coupled, with axial or radial suction nozzle, cast radial impellers and motor-mounted variable speed system. ATEX-compliant version available.	
KSB SuPremE, PumpDriv	e, PumpMeter		http://shop.ksb.com/catalog/k0/en/product/ES000214	

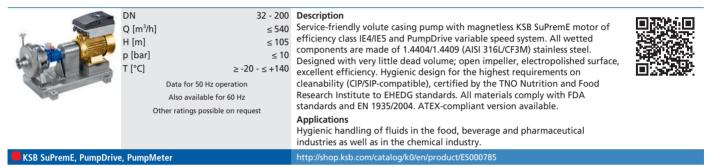
Axially split pumps


Omega

RDLO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 10000 ≤ 290 ≤ 30	installation, with double-entry radial impeller, mating flanges to DIN, EN or ASME.
PumpMeter, Frequency inverter			http://shop.ksb.com/catalog/k0/en/product/ES000170

RDLP



Hygienic pumps

Vitachrom

- Comment	DN Q [m³/h] H [m] p [bar] T [°C]	50 - 125 ≤ 340 ≤ 100 ≤ 12 ≥ -30 - ≤ +110 Data for 50 Hz operation Also available for 60 Hz	Service-friendly non-self-priming single-stage hygienic close-coupled pump in back pull-out design with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system. The pump features a semi-open impeller and electropolished surfaces. It is very easy to clean by CIP/SIP thanks	
KSB SuPremE, PumpDrive	e, PumpMe	ter	http://shop.ksb.com/catalog/k0/en/product/ES000030	

Vitacast

Vitacast Bloc

and D	A	≤ 340 < 105	components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Designed with very little dead volume: open impeller, electropolished surface.	
KSB SuPremE, PumpDriv	e, PumpMeter		http://shop.ksb.com/catalog/k0/en/product/ES000785	

Vitaprime

		< 58	Description Service-friendly close-coupled side channel pump (self-priming) with magnetless KSB SuPremE motor of efficiency class IE4/IE5 and PumpDrive variable speed system. All wetted components are made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel. Hygienic design for the highest requirements on cleanability (CIP/SIP-compatible). All materials comply with FDA standards and EN 1935/2004. Trolley available among other accessories. ATEX-compliant version available. Applications Hygienic handling of fluids in the food, beverage and pharmaceutical industries as well as in the chemical industry.	
KSB SuPremE, PumpDrive			http://shop.ksb.com/catalog/k0/en/product/ES000787	

Vitastage

	≤ 150 ≤ 16	compatible. All materials comply with FDA standards and EN 1935/2004. Trolley also available among other accessories. Applications Processes with hygienic requirements in the food and beverage industries and in the chemical industry.	
		http://shop.ksb.com/catalog/k0/en/product/ES000788	

Vitalobe

	DN Q [m ³ /h] H [m] p [bar] T [°C] Viscosity [cP] Data for 50 Hz ope Also available for Other ratings possible of	≤ 342 ≤ 200 ≤ 20 $\geq -40 - \leq +180$ ≤ 200000 ration 50 Hz	 Description Sturdy rotary lobe pump in hygienic design, bi-directional operation possible, horizontal or vertical orientation of connections. Hygienic design, highly CIP/SIP-compatible due to its almost complete lack of dead volume or narrow clearances. All wetted components made of 1.4404/1.4409 (AISI 316L/CF3M) stainless steel; various rotor types, shaft seals and process connections available. Installed as a pump set with gear unit and standardised motor. Vitalobe is EHEDG-certified. The pump elastomers comply with the FDA standards and EN 1935/2004. Accessories include a trolley, a heatable casing or casing cover and a pressure relief arrangement. An ATEX-compliant version is available. Applications Hygienic and gentle handling of sensitive or high-viscosity fluids in the food, beverage and pharmaceutical industries, the chemical industry and general process engineering. 	
KSB SuPremE, PumpDrive	2		http://shop.ksb.com/catalog/k0/en/product/ES000847	

Pumps for power station conventional islands

CHTA / CHTC / CHTD

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Also available for 60 Hz Higher ratings possible on requ	≤ 5700 ≤ 5400 ≤ 560 ≤ +270 ≤ 6750	Applications Pumping feed water and condensate in power stations and industrial plants.	
		http://shop.ksb.com/catalog/k0/en/product/ES000239	

HGB / HGC / HGD

6			Description	1
hat and a	Q [m³/h]	≤ 2300 ≤ 5300	Horizontal radially split ring-section pump with radial impellers, single-entry or double-entry, multistage.	I
	H [m] p [bar]	≤ 5300 ≤ 560	Applications	
	T [°C]	≤ +210	Pumping feed water and condensate in power stations and industrial plants, pumping gas turbine fuels, generating pressurised water for bark peeling and	
	n [rpm]	≤ 7000	descaling units, snow guns, etc.	
	Also available for 60 Hz			
	Higher ratings possible on reque	est		
			http://shop.ksb.com/catalog/k0/en/product/ES000233	

HGI

Pumps

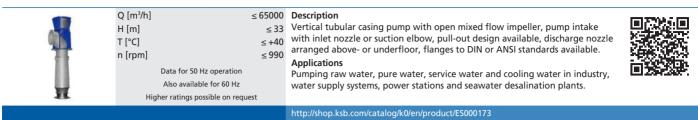
H [m] ≤ 2000	Horizontal radially split ring-section pump with radial impellers, single-entry, multistage. Applications Pumping feed water and condensate in power stations and industrial plants.
--------------	--

HGM

Q [m³/h] : H [m] ≤ p [bar] : T [°C] ≤	≤ 350 ≤ 1400 ≤ 140 ≤ 140 ≤ +160 ≤ 3600	Applications Pumping feed water in power stations, boiler feed systems and condensate transport in industrial plants.	
		http://shap.ksh.com/catalog/k0/en/product/ES000236	

YNK

		DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Higher ratings pos	≤ 5200 ≤ 540 ≤ 100 ≤ +250 ≤ 3300	Description Horizontal radially split single-stage double-entry boiler feed booster pump (booster system) with cast steel single or double volute casing. Applications Pumping feed water in power stations and industrial plants.	
--	--	---	--	--	--


LUV / LUVA

		DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 7000 ≤ 300 ≤ 400 ≤ +425	Description Vertical spherical casing pump, radial impellers, single-entry, single- to three- stage. Suitable for very high inlet pressures and temperatures. Integrated wet winding motor to VDE. Product-lubricated bearings, no need for oil supply systems. Design to TRD, ASME or IBR. Applications Hot water recirculation in forced-circulation, forced-flow and combined- circulation boilers for very high pressures and in solar power towers.	
--	--	---	------------------------------------	---	--

WKTB

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz	≤ 1500 < 370	Description Vertical can-type ring-section pump on base frame, multistage, first-stage impeller designed as a double-entry suction impeller, radial impellers. Flanges to DIN or ANSI. Applications Pumping condensate in power stations and industrial plants.	
		http://shop.ksb.com/catalog/k0/en/product/ES000506	

SEZ

SEZT

H [m] ≤ 110	 Description Vertical tubular casing pump with open or closed mixed flow impeller Applications Handling seawater in seawater desalination plants.
	http://shop.ksb.com/catalog/k0/en/product/ES000174

PHZ

H [m] ≤ 25	Description Vertical tubular casing pump with mixed flow propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available. Applications Raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.
	http://shop.ksb.com/catalog/k0/en/product/ES000158

PNZ

		H [m] ≤ 15	DescriptionVertical tubular casing pump with axial propeller, pump intake with inlet nozzle or suction elbow, pull-out design available, discharge nozzle arranged above- or underfloor, flanges to DIN or ANSI standards available.Applications Raw water, pure water, service water and cooling water in industry, water supply systems, power stations and seawater desalination plants.
--	--	------------	---

SNW

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Data for 50 Hz operation Also available for 60 Hz Higher ratings possible on requ	350 - 800 ≤ 6500 ≤ 10 $\leq +60$ ≤ 1500 wuest	
		http://shop.ksb.com/catalog/k0/en/product/ES000176

PNW

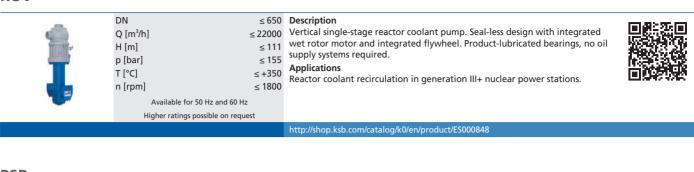
Q [m³/h] ≤ H [m] p [bar] T [°C] ::	0 - 800 ≤ 9000 ≤ 10 ≤ 10 ≤ 10 ≤ +60 ≤ 1500	maintenance-free Residur bearings, discharge nozzle arranged above or below floor level. Applications Irrigation and drainage, stormwater pumping stations, for raw water and
		http://shop.ksb.com/catalog/k0/en/product/ES000163

Beveron

Q [m ³ /s] H [m] Data for 50 Hz operat Also available for 60 Higher ratings possible on	≤ 27 ion Hz	Description Concrete volute casing pump with mixed flow impeller, single-stage, with zero-maintenance Residur bearings lubricated by the fluid handled. Applications Coast protection and flood control, irrigation and drainage, low-lift pumping stations, reservoir filling, cooling water, raw and pure water.	
		http://shop.ksb.com/catalog/k0/en/product/ES000868	

SPY

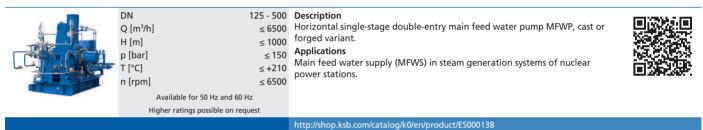
DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 21600 ≤ 50 ≤ 10	Description Long-coupled volute casing pump, single-stage, in back pull-out design. Applications Irrigation, drainage and water supply systems, for pumping condensate, cooling water, service water, etc.
Data for 50	Hz operation	
Also availa	ble for 60 Hz	
Higher ratings p	ossible on request	


Pumps for nuclear power stations

RER	DN ≤800	Description	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	on the inside, with diffuser, either with integrated pump thrust bearing or shaft supported by motor bearing. Applications Reactor coolant recirculation in nuclear power stations.	
	Higher ratings possible on request		
		http://shop.ksb.com/catalog/k0/en/product/ES000144	

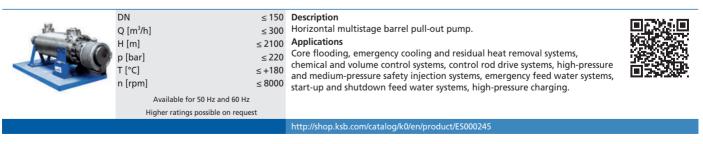
RSR

DN Q [m ³ /h] H [m] p [bar] T [°C] n [rpm] Available for 50 Hz and 60 Hz Higher ratings possible on reque	≤ 215 ≤ 175 ≤ +350 ≤ 1800	Description Vertical single-stage reactor coolant pump with cast or forged casing, shaft supported by motor bearing. Applications Reactor coolant recirculation in nuclear power stations.	
		http://shop.ksb.com/catalog/k0/en/product/ES000146	


RUV

PSR

Q [m³/h] ≤ H [m] p [bar] T [°C] ≤	≤ 9000 ≤ 45 ≤ 75 ≤ +300 ≤ 2000	Applications	
		http://shop.ksb.com/catalog/k0/en/product/ES000150	


RHD

LUV Nuclear

STATE OF	DN Q [m ³ /h] H [m] p [bar] T [°C] Data for 50 Hz operation Also available for 60 Hz	40 - 600 ≤ 7000 ≤ 300 ≤ 320 ≤ +430		
			http://shop.ksb.com/catalog/k0/en/product/ES000855	

RHM

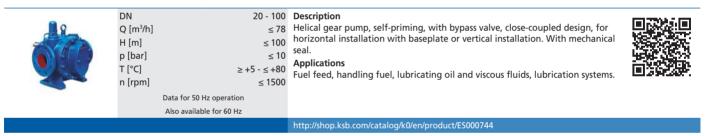
RVM

Pumps for desalination by reverse osmosis

RPH-RO

DN Q [m³/h] H [m] p [bar] T [°C]	≤ 250 < 11	 Description Horizontal radially split volute casing pump for dry installation, made of super-duplex stainless steel. Applications Booster pump for RO seawater desalination systems.
		http://shop.ksb.com/catalog/k0/en/product/ES000570

HGM-RO


DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 1500 ≤ 950 ≤ 120 ≥ 0 - ≤ +40	stainless steel variant or super duplex stainless steel variant, also suitable for chilled water applications.	
		http://shap.ksh.com/satalag/k0/ap/product/ES000227	

Multitec-RO

	DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 850 ≤ 1000 ≤ 100	Made of duplex or superduplex stainless steel. Applications High-pressure pump for RO seawater desalination systems and geothermal
		Also available for 60 Hz	
KSB SuPremE, PumpDrive			

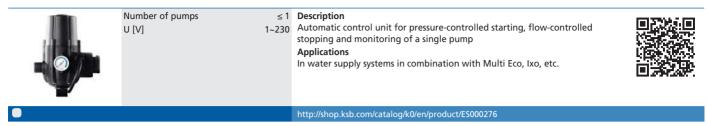
Positive displacement pumps

RC / RCV

Fire-fighting systems

EDS

DN Q [m³/h] H [m] p [bar] T [°C] n [rpm]	≤ 840 ≤ 140 < 16	Description Automatic fire-fighting system consisting of a jockey pump and one or several duty pumps, with electric motor or diesel engine. Includes manifold, valves, accessories and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, etc. Applications Office buildings, hotels, industry, shopping malls, etc.
		http://shop.ksb.com/catalog/k0/en/product/ES000726


DU / EU

Pumps

	≤ 2500 ≤ 150 ≤ 25	Description Automatic fire-fighting system consisting of pumps with electric motor or diesel engine and control unit. To EN 12845, CEA 4001, UNE-23500, NFPA-20, FM, etc. Applications Office buildings, hotels, industry, shopping malls, etc.
		http://shop.ksb.com/catalog/k0/en/product/ES000727

Control units

Controlmatic E

Controlmatic E.2

Number of pumps U [V]	≤ 1 1~230	Description Automatic control unit for pressure-controlled starting, flow-controlled stopping and monitoring of a single pump Applications In water supply systems in combination with Multi Eco, Ixo, etc.	
		http://shop.ksb.com/catalog/k0/en/product/ES000276	

Cervomatic EDP.2

Correction 10.073	Number of pumps U [V]	Description Automatic control unit for pressure-controlled starting and either pressure- controlled or flow-controlled stopping and monitoring of a single pump. Applications In water supply systems with pumps of the Multi Eco, Ixo, etc. type series with single-phase or three-phase motors	
		http://shap.ksh.com/catalog/k0/op/product/ES000275	

LevelControl Basic 2

Number of pumps ≤ 2 P [kW] ≤ 22 U [V] 1~230 / 3~400 Available for higher ratings and other mains voltages on request.	Level control unit for controlling and protecting either one or two pumps. DOL starting up to 4 kW, star-delta starting up to 22 kW. Higher ratings on request. Applications Tank drainage using float switches, digital switches, 420 mA, pneumatic (without compressor) or bubbler system in building services and waste water applications. Tank filling using float switches, digital switches or 420 mA signals in building services and water supply applications.	
	http://shop.ksb.com/catalog/k0/en/product/ES000603	

UPA Control

Number of pumps P [kW] U [V]	_	Description The KSB switchgear is suitable for level control and protection of submersible borehole pumps, submersible motor pumps and dry-installed pumps with single-phase AC motors 1~ 230 V or three-phase motors 3~ 230 / 400 V / 50 Hz. The motor is started DOL. Enclosure: IP56, dimensions: 205 × 255 × 170 mm (H × W × D). Applications Irrigation and filling or draining tanks in water supply applications in combination with 4" and 6" pumps.	
		http://shop.ksb.com/catalog/k0/en/product/ES000006	

Hyatronic N

*	 Description Pump control system in control cabinet for cascade starting and stopping of up to six pumps. Applications For draining tanks and sumps in drainage and waste water disposal applications. For filling tanks in water supply applications. Level measurement using float switch or 420 mA sensor.
	http://shap.ksh.com/catalog/k0/en/product/ES000303

Monitoring and diagnosis

Amacontrol II

	Enclosure		Description
	T [°C]	≥0 - ≤ +40	Monitoring system for submersible motor pumps, with tripping function.
	Dimensions		
	H × W ×D [mm]	180 × 250 × 115	
	U [V]	AC 230	

Amacontrol III

Connections Fastening T [°C] Dimensions H × W ×D [mm] U [V]	35 mm standard rail ≥ -30 - ≤ +70 127,2 × 45 × 113,6 AC 115-230 ± 10 %	Protection module for water and waste water products as all-in-one device for motor temperature measurement, bearing temperature measurement, leakage measurement, vibration measurement and voltage measurement, as well as diagnosing a pump, pump system or submersible mixer to ensure trouble-free and reliable operation. Applications In water and waste water systems in combination with Amacan, Amamix, Amaprop, Amaline, Amarex KRT or Sewatec
U [V]	AC/DC 24 ± 10 %	
		http://shop.ksb.com/catalog/k0/en/product/ES000946